Variational Bayesian Estimation of Time-Varying DOAs

We present a Bayesian method for sequential direction finding based on variational line spectral estimation (VALSE). The proposed method promotes sparse solutions by means of a Bernoulli-Gaussian amplitude model, is grid-less, and provides marginal posterior distributions from which DOA estimates and their uncertainties can be extracted. Simulation results demonstrate performance improvements in the considered scenario. We also evaluate the proposed method using acoustic data from an underwater source localization experiment.

[1]  Parikshit Shah,et al.  Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.

[2]  H. Vincent Poor,et al.  Fast Variational Sparse Bayesian Learning With Automatic Relevance Determination for Superimposed Signals , 2011, IEEE Transactions on Signal Processing.

[3]  Christoph F. Mecklenbräuker,et al.  Sequential Bayesian Sparse Signal Reconstruction Using Array Data , 2013, IEEE Transactions on Signal Processing.

[4]  Emmanuel J. Candès,et al.  Towards a Mathematical Theory of Super‐resolution , 2012, ArXiv.

[5]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[6]  Lihua Xie,et al.  On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.

[7]  Dmitriy Shutin,et al.  Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels , 2011, IEEE Transactions on Signal Processing.

[8]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[9]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[10]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[11]  Christopher J. Rozell,et al.  Dynamic Filtering of Time-Varying Sparse Signals via $\ell _1$ Minimization , 2015, IEEE Transactions on Signal Processing.

[12]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[13]  Bernard H. Fleury,et al.  Variational Bayesian Inference of Line Spectra , 2016, IEEE Transactions on Signal Processing.

[14]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[15]  P. Goldstein,et al.  Array analysis of seismic signals , 1987 .

[16]  Qi Zhang,et al.  Grid-less variational Bayesian line spectral estimation with multiple measurement vectors , 2018, Signal Process..

[17]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[18]  Bhaskar D. Rao,et al.  Superfast Line Spectral Estimation , 2017, IEEE Transactions on Signal Processing.

[19]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[20]  H. Vincent Poor,et al.  An introduction to signal detection and estimation (2nd ed.) , 1994 .

[21]  Mats Viberg,et al.  Fast LASSO based DOA tracking , 2011, 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[22]  P. Gerstoft,et al.  Compressive beamforming. , 2014, The Journal of the Acoustical Society of America.

[23]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[24]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[25]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[26]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[27]  Christoph F. Mecklenbräuker,et al.  Multisnapshot Sparse Bayesian Learning for DOA , 2016, IEEE Signal Processing Letters.

[28]  William S. Hodgkiss,et al.  Mirages in shallow water matched‐field processing , 1995 .

[29]  H. Vincent Poor,et al.  Incremental Reformulated Automatic Relevance Determination , 2012, IEEE Transactions on Signal Processing.

[30]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[31]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..

[32]  Mark A. Davenport,et al.  Sparse Bayesian Learning With Dynamic Filtering for Inference of Time-Varying Sparse Signals , 2020, IEEE Transactions on Signal Processing.

[33]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[34]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[35]  Paolo Braca,et al.  Cooperative robotic networks for underwater surveillance: an overview , 2017 .

[36]  Moe Z. Win,et al.  Message Passing Algorithms for Scalable Multitarget Tracking , 2018, Proceedings of the IEEE.

[37]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[38]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[39]  Bhaskar D. Rao,et al.  Type I and Type II Bayesian Methods for Sparse Signal Recovery Using Scale Mixtures , 2015, IEEE Transactions on Signal Processing.