Adaptive nonlinear disturbance observer using double loop self-organizing recurrent wavelet-neural-network for two-axis motion control system

This paper proposes an adaptive nonlinear disturbance observer (ANDO) for identification and control of a two-axis motion control system driven by two permanent-magnet linear synchronous motors (PMLSMs) servo drives. The proposed control scheme incorporates a feedback linearization controller (FLC), a new double loop self-organizing recurrent wavelet neural network (DLSORWNN) controller, a robust controller and an ℋ∞ controller. First, a FLC is designed to stabilize the X-Y table system. Then, a NDO is designed to estimate the nonlinear lumped parameters uncertainties that include the external disturbances, cross-coupled interference and frictional force. However, the X-Y table performance is degraded by the NDO error due to parameter uncertainties. To improve the robustness, the ANDO is designed to attain this purpose. In addition, the robust controller is designed to recover the approximation error of the DLSORWNN while the ℋ∞ controller is specified such that the quadratic cost function is minimized and the worst case effect of NDO error must be attenuated below a desired attenuation level. The online adaptive control laws are derived using the Lyapunov stability analysis and ℋ∞ control theory, so that the stability of the ANDO can be guaranteed. The experimental results show the improvements in disturbance suppression and parameter uncertainties, which illustrate the superiority of the ANDO control scheme.

[1]  C.-L. Lin,et al.  Approach to adaptive neural net-based H∞ control design , 2002 .

[2]  Sehoon Oh,et al.  A High-Precision Motion Control Based on a Periodic Adaptive Disturbance Observer in a PMLSM , 2015, IEEE/ASME Transactions on Mechatronics.

[3]  Ying-Shieh Kung,et al.  Robust fuzzy neural network controller with nonlinear disturbance observer for two-axis motion control system , 2008 .

[4]  C. F. Chen,et al.  Wavelet approach to optimising dynamic systems , 1999 .

[5]  Wen-Hua Chen,et al.  Disturbance observer based control for nonlinear systems , 2004, IEEE/ASME Transactions on Mechatronics.

[6]  Shuzhi Sam Ge,et al.  Adaptive Neural Output Feedback Control of Uncertain Nonlinear Systems With Unknown Hysteresis Using Disturbance Observer , 2015, IEEE Transactions on Industrial Electronics.

[7]  Zongxia Jiao,et al.  Output Feedback Robust Control of Direct Current Motors With Nonlinear Friction Compensation and Disturbance Rejection , 2015 .

[8]  Chun-Yi Su,et al.  A Novel Robust Nonlinear Motion Controller With Disturbance Observer , 2006, IEEE Transactions on Control Systems Technology.

[9]  Faa-Jeng Lin,et al.  TSK-type recurrent fuzzy network for dsp-based permanent-magnet linear synchronous motor servo drive , 2006 .

[10]  Okyay Kaynak,et al.  Fuzzy Wavelet Neural Networks for Identification and Control of Dynamic Plants—A Novel Structure and a Comparative Study , 2008, IEEE Transactions on Industrial Electronics.

[11]  Rong-Jong Wai,et al.  Two-axis motion control system using wavelet neural network for ultrasonic motor drives , 2004 .

[12]  Khaled Ali Abuhasel Intelligent Mixed H2/H? Adaptive Tracking Control System Design Using Self-Organizing Recurrent Fuzzy-Wavelet-Neural-Network for Uncertain Two-Axis Motion Control System , 2016 .

[13]  Liang Yan,et al.  High-Accuracy Tracking Control of Hydraulic Rotary Actuators With Modeling Uncertainties , 2014, IEEE/ASME Transactions on Mechatronics.

[14]  Fayez F. M. El-Sousy,et al.  Robust wavelet-neural-network sliding-mode control system for permanent magnet synchronous motor drive , 2011 .

[15]  Faa-Jeng Lin,et al.  Adaptive Control of Two-Axis Motion Control System Using Interval Type-2 Fuzzy Neural Network , 2009, IEEE Transactions on Industrial Electronics.

[16]  Peter J. Gawthrop,et al.  A nonlinear disturbance observer for robotic manipulators , 2000, IEEE Trans. Ind. Electron..

[17]  Faa-Jeng Lin,et al.  Recurrent fuzzy neural network controller design using sliding-mode control for linear synchronous motor drive , 2004 .

[18]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[19]  Faa-Jeng Lin,et al.  Adaptive fuzzy-neural-network control for a DSP-based permanent magnet linear synchronous motor servo drive , 2006, IEEE Transactions on Fuzzy Systems.

[20]  Li Xu,et al.  Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments , 2001, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[21]  Faa-Jeng Lin,et al.  Robust Fuzzy Neural Network Sliding-Mode Control for Two-Axis Motion Control System , 2006, IEEE Transactions on Industrial Electronics.

[22]  Fayez F. M. El-Sousy Robust adaptive H ∞ position control via a wavelet-neural-network for a DSP-based permanent-magnet synchronous motor servo drive system , 2010 .

[23]  B. Yao Desired Compensation Adaptive Robust Control ∗ , 1998 .

[24]  Tsu-Tian Lee,et al.  On-line tuning of fuzzy-neural network for adaptive control of nonlinear dynamical systems , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[25]  Mei-Yung Chen,et al.  APPLICATION OF ADAPTIVE VARIABLE SPEED BACK-STEPPING SLIDING MODE CONTROLLER FOR PMLSM POSITION CONTROL , 2014 .

[26]  Fayez F. M. El-Sousy,et al.  Propulsion and levitation H ∞ optimal control of underwater linear motor vehicle ME02 , 2005 .

[27]  Bernard Delyon,et al.  Accuracy analysis for wavelet approximations , 1995, IEEE Trans. Neural Networks.

[28]  M. Moraud Wavelet Networks , 2018, Foundations of Wavelet Networks and Applications.

[29]  Heikki Handroos,et al.  Application of neural network in suppressing mechanical vibration of a permanent magnet linear motor , 2008 .

[30]  Giuseppe Tomasso,et al.  Robust position control of DC drives by means of H/sub /spl infin// controllers , 1999 .

[31]  Fayez F. M. El-Sousy,et al.  Hybrid ${\rm H}^{\infty}$-Based Wavelet-Neural-Network Tracking Control for Permanent-Magnet Synchronous Motor Servo Drives , 2010, IEEE Transactions on Industrial Electronics.

[32]  Fayez F. M. El-Sousy,et al.  Intelligent Optimal Recurrent Wavelet Elman Neural Network Control System for Permanent-Magnet Synchronous Motor Servo Drive , 2013, IEEE Transactions on Industrial Informatics.

[33]  Ben M. Chen,et al.  H∞ disturbance observer design for high precision track following in hard disk drives , 2009 .

[34]  Damian Giaouris,et al.  Wavelet Denoising for Electric Drives , 2008, IEEE Transactions on Industrial Electronics.

[35]  Zongxia Jiao,et al.  RISE-Based Precision Motion Control of DC Motors With Continuous Friction Compensation , 2014, IEEE Transactions on Industrial Electronics.

[36]  Bin Yao,et al.  Desired Compensation Adaptive Robust Control of a Linear-Motor-Driven Precision Industrial Gantry With Improved Cogging Force Compensation , 2008, IEEE/ASME Transactions on Mechatronics.

[37]  Shiqi Zheng,et al.  Adaptive speed control based on just-in-time learning technique for permanent magnet synchronous linear motor , 2013 .

[38]  Faa-Jeng Lin,et al.  A Robust Recurrent Wavelet Neural Network Controller With Improved Particle Swarm Optimization for Linear Synchronous Motor Drive , 2008, IEEE Transactions on Power Electronics.

[39]  Daniel Coutinho,et al.  Multiple-Loop H-Infinity Control Design for Uninterruptible Power Supplies , 2007, IEEE Transactions on Industrial Electronics.

[40]  Fayez F. M. El-Sousy Intelligent mixed H2/H∞ adaptive tracking control system design using self-organizing recurrent fuzzy-wavelet-neural-network for uncertain two-axis motion control system , 2016, Appl. Soft Comput..

[41]  Yusuf Oysal,et al.  Fuzzy Wavelet Neural Network Models for Prediction and Identification of Dynamical Systems , 2010, IEEE Transactions on Neural Networks.

[42]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[43]  I. Boldea,et al.  Linear Electric Motors: Theory, Design and Practical Applications , 1987 .

[44]  Kazuo Tanaka,et al.  Fuzzy control systems design and analysis , 2001 .

[45]  Tong Heng Lee,et al.  Improving Transient Performance in Tracking General References Using Composite Nonlinear Feedback Control and Its Application to High-Speed $XY$-Table Positioning Mechanism , 2007, IEEE Transactions on Industrial Electronics.

[46]  Bor-Sen Chen,et al.  H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach , 1996, IEEE Trans. Fuzzy Syst..

[47]  Jan T. Bialasiewicz,et al.  Wavelet-Based Performance Evaluation of Power Converters Operating With Modulated Switching Frequency , 2008, IEEE Transactions on Industrial Electronics.

[48]  F. Sheikholeslam,et al.  Fuzzy Wavelet Neural Network With an Accelerated Hybrid Learning Algorithm , 2012, IEEE Transactions on Fuzzy Systems.

[49]  Fayez F. M. El-Sousy Hybrid recurrent cerebellar model articulation controller-based supervisory h∞ motion control system for permanent-magnet synchronous motor servo drive , 2011 .

[50]  Yu-wu Zhu,et al.  Thrust Ripples Suppression of Permanent Magnet Linear Synchronous Motor , 2007, IEEE Transactions on Magnetics.

[51]  Anton A. Stoorvogel,et al.  The H ∞ control problem: a state space approach , 2000 .

[52]  P.-H. Shen,et al.  An Adaptive Recurrent-Neural-Network Motion Controller for X-Y Table in CNC Machine , 2006, IEEE Trans. Syst. Man Cybern. Part B.

[53]  Satoru Goto,et al.  Accurate contour control of mechatronic servo systems using Gaussian networks , 1996, IEEE Trans. Ind. Electron..

[54]  Jay A. Farrell,et al.  Wavelet-based system identification for nonlinear control , 1999, IEEE Trans. Autom. Control..

[55]  Jianbo Su,et al.  Robust Disturbance Observer for Two-Inertia System , 2013, IEEE Transactions on Industrial Electronics.

[56]  Faa-Jeng Lin,et al.  Tracking control of a two-axis motion system via a filtering-type sliding-mode control with radial basis function network , 2009, 2009 International Conference on Power Electronics and Drive Systems (PEDS).

[57]  Kwang Y. Lee,et al.  An optimal tracking neuro-controller for nonlinear dynamic systems , 1996, IEEE Trans. Neural Networks.

[58]  Alexander H. Slocum,et al.  Adaptive control strategies for a precision machine tools axis , 1995 .

[59]  Masayoshi Tomizuka,et al.  Coordinated Position Control of Multi-Axis Mechanical Systems , 1998 .

[60]  Zongxia Jiao,et al.  Adaptive Robust Control of DC Motors With Extended State Observer , 2014, IEEE Transactions on Industrial Electronics.

[61]  M. Tomizuka,et al.  High performance robust motion control of machine tools: an adaptive robust control approach and comparative experiments , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[62]  Junji Hirai,et al.  Iterative Design of the Reduced-Order Weight and Controller for the $H_{\infty}$ Loop-Shaping Method Under Open-Loop Magnitude Constraints for SISO Systems , 2009, IEEE Transactions on Industrial Electronics.

[63]  Tsu-Tian Lee,et al.  Hinfin tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[64]  Stephen A. Billings,et al.  A new class of wavelet networks for nonlinear system identification , 2005, IEEE Transactions on Neural Networks.

[65]  Toshio Fukuda,et al.  Design of a nonlinear disturbance observer , 2000, IEEE Trans. Ind. Electron..

[66]  Jun Zhang,et al.  Wavelet neural networks for function learning , 1995, IEEE Trans. Signal Process..

[67]  Faa-Jeng Lin,et al.  Modified Elman neural network controller with improved particle swarm optimisation for linear synchronous motor drive , 2008 .

[68]  Bin Yao,et al.  A globally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments , 2006, American Control Conference.

[69]  Bin Yao,et al.  Observer based adaptive robust control of a class of nonlinear systems with dynamic uncertainties , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[70]  Chyun-Chau Fuh,et al.  Suppression of Hunting in an ILPMSM Driver System Using Hunting Compensator , 2013, IEEE Transactions on Industrial Electronics.

[71]  Bin Yao,et al.  Neural network adaptive robust control of nonlinear systems in semi-strict feedback form , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[72]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[73]  Toshio Fukuda,et al.  A nonlinear disturbance observer for multivariable systems and its application to magnetic bearing systems , 2004, IEEE Transactions on Control Systems Technology.

[74]  Faa-Jeng Lin,et al.  Intelligent backstepping sliding-mode control using RBFN for two-axis motion control system , 2005 .

[75]  Chih-Hong Lin,et al.  Incremental motion control of linear synchronous motor , 2002 .

[76]  Seung-Ki Sul,et al.  Application of a Disturbance Observer for a Relative Position Control System , 2010, IEEE Transactions on Industry Applications.

[77]  Zongxia Jiao,et al.  Extended-State-Observer-Based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping , 2014, IEEE Transactions on Industrial Electronics.

[78]  Chun-Fei Hsu,et al.  Adaptive fuzzy wavelet neural controller design for chaos synchronization , 2011, Expert Syst. Appl..

[79]  P.-H. Shen,et al.  Robust recurrent-neural-network sliding-mode control for the X-Y table of a CNC machine , 2006 .

[80]  Wen-Chi Lin,et al.  Self-adaptive interval type-2 neural fuzzy network control for PMLSM drives , 2011, Expert Syst. Appl..

[81]  Fayez F. M. El-Sousy,et al.  Self-organizing recurrent fuzzy wavelet neural network-based mixed H2/H∞ adaptive tracking control for uncertain two-axis motion control system , 2015, 2015 IEEE Industry Applications Society Annual Meeting.

[82]  Chih-Hong Lin,et al.  Robust H∞ controller design with recurrent neural network for linear synchronous motor drive , 2003, IEEE Trans. Ind. Electron..

[83]  Bor-Sen Chen,et al.  A nonlinear adaptive H∞ tracking control design in robotic systems via neural networks , 1996, IEEE Trans. Control. Syst. Technol..

[84]  Faa-Jeng Lin,et al.  Recurrent wavelet-based Elman neural network control for multi-axis motion control stage using linear ultrasonic motors , 2010 .

[85]  Faa-Jeng Lin,et al.  DSP-Based Cross-Coupled Synchronous Control for Dual Linear Motors via Intelligent Complementary Sliding Mode Control , 2012, IEEE Transactions on Industrial Electronics.

[86]  Read Precision Motion Control Design And Implementation Advances In Industrial Control Precision Motion Control Design And Implementation Advances In Industrial Control , 2016 .

[87]  Faa-Jeng Lin,et al.  FPGA-Based Intelligent-Complementary Sliding-Mode Control for PMLSM Servo-Drive System , 2010, IEEE Transactions on Power Electronics.

[88]  Takamasa Hori,et al.  Control of redundant manipulators considering order of disturbance observer , 2000, IEEE Trans. Ind. Electron..

[89]  Emre Sariyildiz,et al.  Stability and Robustness of Disturbance-Observer-Based Motion Control Systems , 2019, IEEE Transactions on Industrial Electronics.

[90]  Arthur J. Krener,et al.  H∞ tracking control for a class of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[91]  Jennifer Werfel,et al.  Linear Electric Actuators And Generators , 2016 .

[92]  Yi-Sheng Huang,et al.  Function-Based Controller for Linear Motor Control Systems , 2010, IEEE Transactions on Industrial Electronics.

[93]  Chang-Ming Liaw,et al.  Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer , 2006 .

[94]  Chi-Huang Lu,et al.  Design and Application of Stable Predictive Controller Using Recurrent Wavelet Neural Networks , 2009, IEEE Transactions on Industrial Electronics.

[95]  Y. Shrivastava,et al.  Adaptive H∞ neural network tracking controller for electrically driven manipulators , 1998 .

[96]  Chun-Yi Su,et al.  An Adaptive Robust Nonlinear Motion Controller Combined With Disturbance Observer , 2010, IEEE Transactions on Control Systems Technology.

[97]  I. Boldea,et al.  Linear Electric Actuators and Generators: Linear Electric Actuators and Generators , 1997 .