Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays

We develop tomographic techniques for image synthesis on displays composed of compact volumes of light-attenuating material. Such volumetric attenuators recreate a 4D light field or high-contrast 2D image when illuminated by a uniform backlight. Since arbitrary oblique views may be inconsistent with any single attenuator, iterative tomographic reconstruction minimizes the difference between the emitted and target light fields, subject to physical constraints on attenuation. As multi-layer generalizations of conventional parallax barriers, such displays are shown, both by theory and experiment, to exceed the performance of existing dual-layer architectures. For 3D display, spatial resolution, depth of field, and brightness are increased, compared to parallax barriers. For a plane at a fixed depth, our optimization also allows optimal construction of high dynamic range displays, confirming existing heuristics and providing the first extension to multiple, disjoint layers. We conclude by demonstrating the benefits and limitations of attenuation-based light field displays using an inexpensive fabrication method: separating multiple printed transparencies with acrylic sheets.

[1]  G. Lippmann Epreuves reversibles donnant la sensation du relief , 1908 .

[2]  Adrian R. L. Travis,et al.  Correcting interperspective aliasing in autostereoscopic displays , 2005, IEEE Transactions on Visualization and Computer Graphics.

[3]  Thomas F. Coleman,et al.  A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables , 1992, SIAM J. Optim..

[4]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[5]  Sakuichi Ohtsuka,et al.  Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths , 2004, Vision Research.

[6]  Hideshi Yamada,et al.  Rendering for an Interactive 360 ◦ Light Field Display , 2007 .

[7]  Frédo Durand,et al.  Antialiasing for automultiscopic 3D displays , 2006, EGSR '06.

[8]  Baining Guo,et al.  Fabricating spatially-varying subsurface scattering , 2010, ACM Trans. Graph..

[9]  L. Lipton Foundations of the Stereoscopic Cinema , 1982 .

[10]  Gregg E. Favalora,et al.  Occlusion-capable multiview volumetric three-dimensional display. , 2007, Applied optics.

[11]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[12]  오윤식,et al.  Volumetric Three-dimensional Display Systems , 2001 .

[13]  Additive and subtractive transparent depth displays , 2003, SPIE Defense + Commercial Sensing.

[14]  Michael Unser,et al.  Fast Space-Variant Elliptical Filtering Using Box Splines , 2010, IEEE Transactions on Image Processing.

[15]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[16]  P. Peebles Probability, Random Variables and Random Signal Principles , 1993 .

[17]  T. Dekker,et al.  2D/3D switchable displays , 2006, SPIE OPTO.

[18]  Wojciech Matusik,et al.  Physical reproduction of materials with specified subsurface scattering , 2010, ACM Trans. Graph..

[19]  ニュータイプ,et al.  ももへの手紙 : Art & animation , 2012 .

[20]  Wojciech Matusik,et al.  Printing spatially-varying reflectance , 2009, ACM Trans. Graph..

[21]  Naoki Kawakami,et al.  Seelinder: the cylindrical lightfield display , 2005, SIGGRAPH '05.

[22]  David Salesin,et al.  Spatio-angular resolution tradeoffs in integral photography , 2006, EGSR '06.

[23]  Hironobu Gotoda A multilayer liquid crystal display for autostereoscopic 3D viewing , 2010, Electronic Imaging.

[24]  Gregg E. Favalora Volumetric 3D displays and application infrastructure , 2005, Computer.

[25]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, ACM Trans. Graph..

[26]  Michitaka Hirose,et al.  All-around display for video avatar in real world , 2003, The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings..

[27]  Shree K. Nayar,et al.  3D Display Using Passive Optical Scatterers , 2007, Computer.

[28]  Douglas Lanman,et al.  Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization , 2010, ACM Trans. Graph..

[29]  Wolfgang Heidrich,et al.  High dynamic range display systems , 2004, ACM Trans. Graph..

[30]  Chris Slinger,et al.  Computer-generated holography as a generic display technology , 2005, Computer.

[31]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[32]  Enrico Gobbetti,et al.  A Large Scale Interactive Holographic Display , 2006, IEEE Virtual Reality Conference (VR 2006).

[33]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[34]  Niloy J. Mitra,et al.  Shadow art , 2009, ACM Trans. Graph..

[35]  A. C. Riddle,et al.  Inversion of Fan-Beam Scans in Radio Astronomy , 1967 .

[36]  A. Sullivan 58.3: A Solid‐state Multi‐planar Volumetric Display , 2003 .

[37]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.

[38]  Erik Reinhard,et al.  High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting , 2010 .

[39]  Takeo Kanade,et al.  A multi-layered display with water drops , 2010, ACM Trans. Graph..

[40]  Andrey N. Putilin,et al.  Stereodisplay with neural network image processing , 2001, International Symposium on Advanced Display Technologies.

[41]  J. Rinehart,et al.  U . S . Patent , 2006 .