End depth computation in inverted semicircular channels using ANNs

Abstract The paper presents the application of artificial neural network (ANN) to determine the end-depth-ratio (EDR) for a smooth inverted semicircular channel in all flow regimes (subcritical and supercritical). The experimental data were used to train and validate the network. In subcritical flow, the end depth is related to the critical depth, and the value of EDR is found to be 0.705 for a critical depth–diameter ratio up to 0.40, which agrees closely with the value of 0.695 given by Dey [Flow Meas. Instrum. 12 (4) (2001) 253]. On the other hand, in supercritical flow, the empirical relationships for EDR and non-dimensional discharge with the non-dimensional streamwise slope of the channel are established.

[1]  M. H. Diskin End Depth at a Drop in Trapezoidal Channels , 1962 .

[2]  D. Muralidhar,et al.  Characteristics Of The Rectangular Free Overfall , 1968 .

[3]  Sharad K. Jain,et al.  Development of Integrated Sediment Rating Curves Using ANNs , 2001 .

[4]  Willi H. Hager,et al.  Hydraulics of Plane Free Overfall , 1983 .

[5]  Subhasish Dey,et al.  Overfall in U-Shaped Channels , 2003 .

[6]  Hunter Rouse,et al.  Discharge Characteristics of the Free Overfall: Use of Crest Section as a Control Provides Easy Means of Measuring Discharge , 1936 .

[7]  Subhasish Dey,et al.  Hydraulics of free overfall in Δ-shaped channels , 2002 .

[8]  Robert J. Keller,et al.  Flow Measurement with Trapezoidal Free Overfall , 1989 .

[9]  Nallamuthu Rajaratnam,et al.  Roughness Effects on Rectangular Free Overfall , 1976 .

[10]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[11]  Z. Ahmad M.Ish FLOW MEASUREMENTS WITH TRAPEZOIDAL FREE OVERFALL , 2001 .

[12]  C Jaeger,et al.  DISCUSSION. CALCULATION OF FLOW AT A FREE OVERFALL BY RELAXATION METHOD. , 1966 .

[13]  Kamil Ali,et al.  Free-Vortex Theory Applied to Free Overfalls , 1972 .

[14]  Subhasish Dey,et al.  End Depth in Circular Channels , 1998 .

[15]  S. Dey End depth in steeply sloping rough rectangular channels , 2000 .

[16]  S. Murty Bhallamudi End depth in trapezoidal and exponential channels , 1994 .

[17]  Subhasish Dey,et al.  Free overall in circular channels with flat base: a method of open channel flow measurement , 2002 .

[18]  G. Kane Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations, vol 2: Psychological and Biological Models , 1994 .

[19]  Vito Ferro Flow Measurement with Rectangular Free Overfall , 1992 .

[20]  Ali Zilouchian,et al.  FUNDAMENTALS OF NEURAL NETWORKS , 2001 .

[21]  null null,et al.  Artificial Neural Networks in Hydrology. II: Hydrologic Applications , 2000 .

[22]  C. D. Smith Brink Depth for a Circular Channel , 1962 .

[23]  M. B. Rubin,et al.  On inviscid flow in a waterfall , 1981 .

[24]  Ch. Jaeger COMMENTAIRES ET DISCUSSIONS - HAUTEUR D'EAU A L'EXTRÉMITÉ D'UN LONG DÉVERSOIR , 1948 .

[25]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[26]  N. S. Clarke,et al.  On two-dimensional inviscid flow in a waterfall , 1965, Journal of Fluid Mechanics.

[27]  J S Montes A POTENTIAL FLOW SOLUTION FOR THE FREE OVERFALL. , 1992 .

[28]  Subhasish Dey FREE OVERFALL IN ROUGH RECTANGULAR CHANNELS: A COMPUTATIONAL APPROACH. , 1998 .

[29]  Alastair C. Davis,et al.  Flow Measurement in Sloping Channels with Rectangular Free Overfall , 1998 .

[30]  N. Null Artificial Neural Networks in Hydrology. I: Preliminary Concepts , 2000 .

[31]  S. Dey Free Overfall in Inverted Semicircular Channels , 2003 .

[32]  Subhasish Dey,et al.  Flow measurement by the end-depth method in inverted semicircular channels , 2001 .

[33]  R Govindaraju,et al.  ARTIFICIAL NEURAL NETWORKS IN HYDROLOGY: II, HYDROLOGIC APPLICATIONS , 2000 .

[34]  T. Strelkoff,et al.  Pattern of Potential Flow in a Free Overfall , 1970 .

[35]  Vito Ferro,et al.  Theoretical End-Depth-Discharge Relationship for Free Overfall , 1999 .

[36]  N. R. M.Asce,et al.  The Trapezoidal Free Overfall , 1970 .

[37]  W. L. Chow,et al.  Inviscid Solution for the Problem of Free Overfall , 1979 .

[38]  R. D. Gupta,et al.  Discharge Prediction in Smooth Trapezoidal Free Overfall—(Positive, Zero and Negative Slopes) , 1993 .

[39]  Litsa Anastasiadou-Partheniou,et al.  General End-Depth–Discharge Relationship at Free Overfall in Trapezoidal Channel , 1995 .

[40]  Subhasish Dey,et al.  Free overall in open channels: state-of-the-art review , 2002 .

[41]  Subhasish Dey EDR IN CIRCULAR CHANNELS , 2001 .

[42]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[43]  Nallamuthu Rajaratnam,et al.  End Depth for Exponential Channels , 1964 .

[44]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .