Monte Carlo Integration in Bayesian Statistical Analysis

A review of Monte Carlo methods for approximating the high-dimensional integrals that arise in Bayesian statistical analysis. Emphasis is on the features of many Bayesian applications which make Monte Carlo methods especially appropriate, and on Monte Carlo variance-reduction techniques especially well suited to Bayesian applications. A generalized logistic regression example is used to illustrate the ideas, and high-precision formulas are given for implementing Bayesian Monte Carlo integration.

[1]  A. Rollett,et al.  The Monte Carlo Method , 2004 .

[2]  James O. Berger,et al.  Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .

[3]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[4]  James R. Wilson Variance Reduction Techniques for Digital Simulation , 1984 .

[5]  H. Hartley,et al.  SAMPLING WITH CONTROL VARIABLES , 1954 .

[6]  J. E. H. Shaw,et al.  The implementation of the bayesian paradigm , 1985 .

[7]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[8]  J. Hammersley,et al.  A new Monte Carlo technique: antithetic variates , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  J. Naylor,et al.  Applications of a Method for the Efficient Computation of Posterior Distributions , 1982 .

[10]  C. D. Litton,et al.  Theory of Probability (3rd Edition) , 1984 .

[11]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  M. J. Norman,et al.  Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks , 1987 .

[13]  John W. Tukey,et al.  Antithesis or regression? , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  J. Geweke,et al.  Antithetic acceleration of Monte Carlo integration in Bayesian inference , 1988 .

[15]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[16]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[17]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.