Fully automatic analysis of the knee articular cartilage T1ρ relaxation time using voxel‐based relaxometry

To develop and compare with the classical region of interest (ROI)‐based approach a fully automatic, local, and unbiased way of studying the knee T1ρ relaxation time by creating an atlas and using voxel‐based relaxometry (VBR) in osteoarthritis (OA) and anterior cruciate ligament (ACL) subjects.

[1]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[2]  H. Roos,et al.  Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. , 1995, Osteoarthritis and cartilage.

[3]  A. Hollander,et al.  Degradation of cartilage type II collagen precedes the onset of osteoarthritis following anterior cruciate ligament rupture. , 1999, Arthritis and rheumatism.

[4]  A. Poole,et al.  Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. , 1999, Arthritis and rheumatism.

[5]  T J Mosher,et al.  Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. , 2000, Radiology.

[6]  A. Woolf,et al.  Burden of major musculoskeletal conditions. , 2003, Bulletin of the World Health Organization.

[7]  S. Majumdar,et al.  T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. , 2004, Radiology.

[8]  M. Englund,et al.  High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. , 2004, Arthritis and rheumatism.

[9]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[10]  Gaby S Pell,et al.  Voxel-based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy , 2004, NeuroImage.

[11]  M. Hallett,et al.  The basal ganglia are hyperactive during the discrimination of tactile stimuli in writer's cramp. , 2006, Brain : a journal of neurology.

[12]  J. B. Kneeland,et al.  T1ρ relaxation mapping in human osteoarthritis (OA) cartilage: Comparison of T1ρ with T2 , 2006 .

[13]  S Majumdar,et al.  In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. , 2007, Osteoarthritis and cartilage.

[14]  Ole Fogh Olsen,et al.  Segmenting Articular Cartilage Automatically Using a Voxel Classification Approach , 2007, IEEE Transactions on Medical Imaging.

[15]  E. Roos,et al.  The Long-term Consequence of Anterior Cruciate Ligament and Meniscus Injuries , 2007, The American journal of sports medicine.

[16]  Thomas M. Link,et al.  Inter-subject comparison of MRI knee cartilage thickness , 2008, Medical Image Anal..

[17]  Sharmila Majumdar,et al.  Spatial distribution and relationship of T1ρ and T2 relaxation times in knee cartilage with osteoarthritis , 2009, Magnetic Resonance in Medicine.

[18]  S. Majumdar,et al.  Spatial analysis of magnetic resonance T1rho and T2 relaxation times improves classification between subjects with and without osteoarthritis. , 2009, Medical physics.

[19]  Pierre Dodin,et al.  Automatic Human Knee Cartilage Segmentation From 3-D Magnetic Resonance Images , 2010, IEEE Transactions on Biomedical Engineering.

[20]  Stuart Crozier,et al.  Automatic Segmentation and Quantitative Analysis of the Articular Cartilages From Magnetic Resonance Images of the Knee , 2010, IEEE Transactions on Medical Imaging.

[21]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[22]  Sharmila Majumdar,et al.  Atlas‐based knee cartilage assessment , 2011, Magnetic resonance in medicine.

[23]  C. McCulloch,et al.  Texture analysis of cartilage T2 maps: individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls - data from the osteoarthritis initiative , 2011, Arthritis research & therapy.

[24]  Wenmiao Lu,et al.  Automatic Human Knee Cartilage Segmentation from Multi-contrast MR Images Using Extreme Learning Machines and Discriminative Random Fields , 2011, MLMI.

[25]  Sharmila Majumdar,et al.  Cartilage in anterior cruciate ligament-reconstructed knees: MR imaging T1{rho} and T2--initial experience with 1-year follow-up. , 2011, Radiology.

[26]  R. Frayne,et al.  Voxel-based relaxometry for cases of an unresolved epilepsy diagnosis , 2012, Epilepsy Research.

[27]  Marc Niethammer,et al.  Automatic atlas-based three-label cartilage segmentation from MR knee images , 2014, 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis.

[28]  James Kozloski,et al.  Self-referential forces are sufficient to explain different dendritic morphologies , 2013, Front. Neuroinform..

[29]  Jihad Al-Ajlouni,et al.  The Clinical Pattern of Knee Osteoarthritis in Jordan: A Hospital Based Study , 2013, International journal of medical sciences.

[30]  Jong Keun Seon,et al.  Current Trends in Anterior Cruciate Ligament Reconstruction , 2013, Knee surgery & related research.

[31]  A Similarity Retrieval Tool for Functional Magnetic Resonance Imaging Statistical Maps , 2013 .

[32]  L. Nardo,et al.  Cartilage morphology and T1ρ and T2 quantification in ACL-reconstructed knees: a 2-year follow-up. , 2013, Osteoarthritis and cartilage.

[33]  Stefan Klein,et al.  Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease , 2013, Front. Neuroinform..

[34]  S Majumdar,et al.  Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. , 2014, Osteoarthritis and cartilage.

[35]  Sharmila Majumdar,et al.  Simultaneous acquisition of T1ρ and T2 quantification in knee cartilage: Repeatability and diurnal variation , 2014, Journal of magnetic resonance imaging : JMRI.

[36]  Rajesh P. N. Rao,et al.  Non-invasive detection of high gamma band activity during motor imagery , 2014, Front. Hum. Neurosci..

[37]  Xiaojuan Li,et al.  MR T(1)ρ quantification of cartilage focal lesions in acutely injured knees: correlation with arthroscopic evaluation. , 2014, Magnetic resonance imaging.

[38]  Garry E Gold,et al.  T2 Relaxation time quantitation differs between pulse sequences in articular cartilage , 2015, Journal of magnetic resonance imaging : JMRI.

[39]  J Rivoire,et al.  Cartilage T1ρ and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites. , 2015, Osteoarthritis and cartilage.