Cyclic block designs with block size 3 from Skolem-type sequences

A Skolem-type sequence is a sequence (s1, . . . , st) of positive integers $${i\in D}$$ such that for each $${i\in D}$$ there is exactly one $${j\in \{1, \ldots , t - i\}}$$ such that sj = sj+i = i. Positions in the sequence not occupied by integers $${i\in D}$$ contain null elements. In 1939, Peltesohn solved the existence problem for cyclic Steiner triple systems for v ≡ 1, 3(mod 6), v ≠ 9. Using the same technique in 1981, Colbourn and Colbourn extended the solution to all admissible λ > 1. It is known that Skolem-type sequences may be used to construct cyclic Steiner triple systems as well as cyclic triple systems with λ = 2. The main result of this paper is an extension of former results to cyclic triple systems with λ > 2. In addition we introduce a new kind of Skolem-type sequence.

[1]  Simona Bonvicini,et al.  Some progress on the existence of 1-rotational Steiner triple systems , 2011, Designs, Codes and Cryptography.

[2]  H. Hanani The Existence and Construction of Balanced Incomplete Block Designs , 1961 .

[3]  Nabil Shalaby,et al.  The Use of Sklem Sequences to Generate Perfect One-Factorizations , 2001, Ars Comb..

[4]  Nabil Shalaby,et al.  Skolem sequences: Generalizations and applications , 1991 .

[5]  Th. Skolem,et al.  Some Remarks on the Triple Systems of Steiner. , 1958 .

[6]  Alexander Rosa Poznámka o cyklických Steinerových systémoch trojíc , 1966 .

[7]  Marco Buratti,et al.  Existence of cyclic k-cycle systems of the complete graph , 2003, Discret. Math..

[8]  Charles J. Colbourn,et al.  Cyclic Block Designs With Block Size 3 , 1981, Eur. J. Comb..

[9]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[10]  Catharine A. Baker,et al.  Extended skolem sequences , 1995 .

[11]  Rose Peltesohn Eine Lösung der beiden Heffterschen Differenzenprobleme , 1939 .

[12]  Lothar Heffter Ueber Tripelsysteme , 1897 .

[13]  Edward S. O'keefe,et al.  Verification of a Conjecture of Th. Skolem. , 1961 .

[14]  Marco Buratti,et al.  1‐Rotational Steiner triple systems over arbitrary groups , 2001 .

[15]  Ruizhong Wei Cyclic BSEC of block size 3 , 2002, Discret. Math..

[16]  Alan C. H. Ling,et al.  Skolem-type Difference Sets for Cycle Systems , 2003, Electron. J. Comb..

[17]  Nabil Shalaby,et al.  Simple and indecomposable twofold cyclic triple systems from Skolem sequences , 2000 .

[18]  Th. Skolem,et al.  On certain distributions of integers in pairs with given differences , 1957 .