On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method

Abstract Radial basis function method is an effective tool for solving differential equations in engineering and sciences. Many radial basis functions contain a shape parameter c which is directly connected to the accuracy of the method. Rippa [1] proposed an algorithm for selecting good value of shape parameter c in RBF-interpolation. Based on this idea, we extended the proposed algorithm for selecting a good value of shape parameter c in solving time-dependent partial differential equations.

[1]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[2]  M. Uddin,et al.  RBF-PS method and Fourier Pseudospectral method for solving stiff nonlinear partial differential equations , 2013 .

[3]  Tobin A. Driscoll,et al.  Adaptive residual subsampling methods for radial basis function interpolation and collocation problems , 2007, Comput. Math. Appl..

[4]  Mehdi Dehghan,et al.  A numerical method for KdV equation using collocation and radial basis functions , 2007 .

[5]  C. S. Chen,et al.  Some observations on unsymmetric radial basis function collocation methods for convection–diffusion problems , 2003 .

[6]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[7]  Robert Schaback,et al.  On unsymmetric collocation by radial basis functions , 2001, Appl. Math. Comput..

[8]  P. Nair,et al.  Unsymmetric and symmetric meshless schemes for the unsteady convection–diffusion equation , 2006 .

[9]  Quan Shen,et al.  A meshless method of lines for the numerical solution of KdV equation using radial basis functions , 2009 .

[10]  Yilmaz Dereli,et al.  Radial basis functions method for numerical solution of the modified equal width equation , 2010, Int. J. Comput. Math..

[11]  Benny Y. C. Hon,et al.  An efficient numerical scheme for Burgers' equation , 1998, Appl. Math. Comput..

[12]  Siraj-ul-Islam,et al.  Numerical solution of complex modified Korteweg-de Vries equation by mesh-free collocation method , 2009, Comput. Math. Appl..

[13]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[14]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[15]  S. Haq,et al.  Application of a Numerical Method Using Radial Basis Functions to Nonlinear Partial Differential Equations , 2011 .

[16]  Gennady Mishuris,et al.  Radial basis functions for solving near singular Poisson problems , 2003 .

[17]  Gregory E. Fasshauer,et al.  Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..

[18]  I. Dag,et al.  Numerical solutions of KdV equation using radial basis functions , 2008 .

[19]  Marjan Uddin,et al.  On the numerical solution of nonlinear Burgers'-type equations using meshless method of lines , 2012, Appl. Math. Comput..

[20]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[21]  Youssef F. Rashed,et al.  A MESH-FREE METHOD FOR LINEAR DIFFUSION EQUATIONS , 1998 .

[22]  Siraj-ul-Islam,et al.  A meshfree method for numerical solution of KdV equation , 2008 .

[23]  Mahadevan Ganesh,et al.  Multilevel compact radial functions based computational schemes for some elliptic problems , 2002 .

[24]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[25]  A. Charafi,et al.  An analysis of the linear advection–diffusion equation using mesh-free and mesh-dependent methods , 2002 .

[26]  Y. C. Hon,et al.  Numerical comparisons of two meshless methods using radial basis functions , 2002 .

[27]  M. S. Ismail Numerical solution of complex modified Korteweg-de Vries equation by collocation method , 2009 .

[28]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[29]  E. Kansa,et al.  Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .

[30]  H. Power,et al.  A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the numerical solution of partial differential equations , 2002 .

[31]  Siraj-ul-Islam,et al.  A mesh-free numerical method for solution of the family of Kuramoto-Sivashinsky equations , 2009, Appl. Math. Comput..

[32]  Siraj-ul-Islam,et al.  A mesh-free method for the numerical solution of the KdV–Burgers equation , 2009 .

[33]  Siraj-ul-Islam,et al.  A meshfree interpolation method for the numerical solution of the coupled nonlinear partial differential equations , 2008 .

[34]  G. Fasshauer,et al.  Using meshfree approximation for multi‐asset American options , 2004 .

[35]  Michael Scheuerer,et al.  An alternative procedure for selecting a good value for the parameter c in RBF-interpolation , 2011, Adv. Comput. Math..

[36]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[37]  Y. C. Hon,et al.  A quasi-radial basis functions method for American options pricing , 2002 .

[38]  Elisabeth Larsson,et al.  Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform , 2008 .

[39]  Manuel Kindelan,et al.  Optimal constant shape parameter for multiquadric based RBF-FD method , 2011, J. Comput. Phys..

[40]  D. L. Young,et al.  Novel meshless method for solving the potential problems with arbitrary domain , 2005 .

[41]  T. Driscoll,et al.  Observations on the behavior of radial basis function approximations near boundaries , 2002 .

[42]  B. Šarler,et al.  Meshless local radial basis function collocation method for convective‐diffusive solid‐liquid phase change problems , 2006 .

[43]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[44]  Xiong Zhang,et al.  Meshless methods based on collocation with radial basis functions , 2000 .

[45]  Idris Dag,et al.  Numerical solution of RLW equation using radial basis functions , 2010, Int. J. Comput. Math..