Electron cyclotron current drive efficiency in general tokamak geometry

Green’s-function techniques are used to calculate electron cyclotron current drive (ECCD) efficiency in general tokamak geometry in the low-collisionality regime. Fully relativistic electron dynamics is employed in the theoretical formulation. The high-velocity collision model is used to model Coulomb collisions and a simplified quasilinear rf diffusion operator describes wave–particle interactions. The approximate analytic solutions which are benchmarked with a widely used ECCD model, facilitate time-dependent simulations of tokamak operational scenarios using the noninductive current drive of electron cyclotron waves.

[1]  T. Antonsen,et al.  Neoclassical effects on RF current drive in tokamaks , 1986 .

[2]  J. Cordey,et al.  The effect of localised wave power absorption on ECRH driven currents in a Tokamak , 1983 .

[3]  S. P. Hirshman,et al.  Classical collisional theory of beam‐driven plasma currents , 1980 .

[4]  V. Chan,et al.  Kinetic theory of electron cyclotron current drive in a toroidal device , 1982 .

[5]  K. Matsuda,et al.  Electron cyclotron damping in thermal and nonthermal plasma , 1991 .

[6]  Masayoshi Taguchi,et al.  ECRH CURRENT DRIVE IN TOKAMAK PLASMAS , 1988 .

[7]  R. A. Cairns,et al.  Effects of the relativistic correction to the resonance condition on electron cyclotron current drive , 1983 .

[8]  K. Matsuda,et al.  Ray tracing study of the electron cyclotron current drive in DIII-D using 60 GHz , 1989 .

[9]  Turnbull,et al.  High Beta and Enhanced Confinement in a Second Stable Core VH-Mode Advanced Tokamak. , 1995, Physical review letters.

[10]  N. Fisch Current generation in a relativistic plasma , 1981 .

[11]  V. Chan Neoclassical kernel for electron cyclotron wave driven current in tokamaks , 1987 .

[12]  Allen H. Boozer,et al.  Creating an asymmetric plasma resistivity with waves , 1980 .

[13]  H. Zohm,et al.  Stabilization of neoclassical tearing modes by electron cyclotron current drive , 1997 .

[14]  T. H. Stix Waves in plasmas , 1992 .

[15]  S. Hirshman,et al.  Neoclassical transport of impurities in tokamak plasmas , 1981 .

[16]  G. Giruzzi Impact of electron trapping on RF current drive in tokamaks , 1987 .

[17]  E. Mazzucato,et al.  Damping of electron cyclotron waves in dense plasmas of a compact ignition tokamak , 1987 .

[18]  R. Cohen Erratum: ‘‘Effect of trapped electrons on current drive’’ [Phys. Fluids 30, 2442 (1987)] , 1988 .

[19]  T. Antonsen,et al.  The Generation of Current in Tokamaks by the Absorption of Waves in the Electron Cyclotron Frequency Range , 1984, IEEE Transactions on Plasma Science.

[20]  Thomas M. Antonsen,et al.  Radio frequency current generation by waves in toroidal geometry , 1982 .

[21]  James D. Callen,et al.  On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating , 1997 .

[22]  R. L. Miller,et al.  Upper and lower bounds of the effective trapped particle fraction in general tokamak equilibria , 1995 .

[23]  G. Giruzzi,et al.  GENERATION OF LOCALIZED NONINDUCTIVE CURRENT BY ELECTRON CYCLOTRON WAVES ON THE DIII-D TOKAMAK , 1999 .