Performance Analysis of the Small-Scale α-Type Stirling Engine Using Computational Fluid Dynamics Tools

[1]  J. A. Esnaola,et al.  The thermal non-equilibrium porous media modelling for CFD study of woven wire matrix of a Stirling regenerator , 2015 .

[2]  J. A. Esnaola,et al.  Experimental and numerical flow investigation of Stirling engine regenerator , 2014 .

[3]  Khamid Mahkamov,et al.  Closure to “Discussion: ‘Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling’ ” (2007, ASME J. Energy Resour. Technol., 129, pp. 278, 279, 280) , 2007 .

[4]  Chin-Hsiang Cheng,et al.  Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism , 2010 .

[5]  Tie Li,et al.  Study on the radiation flux and temperature distributions of the concentrator–receiver system in a solar dish/Stirling power facility , 2011 .

[6]  Jeffrey S. Vipperman,et al.  CFD simulation of a thermoacoustic engine with coiled resonator , 2010 .

[7]  Raya Al-Dadah,et al.  Influence of phase angle and dead volume on gamma-type Stirling engine power using CFD simulation , 2016 .

[8]  W. Chen,et al.  A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a low-temperature-differential γ-type Stirling engine , 2014 .

[9]  D. Wilcox Turbulence modeling for CFD , 1993 .

[10]  John D. Burton Discussion: “Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling” [Mahkamov, K., 2006, ASME J. Energy Resour. Technol., 128, pp 203–215] , 2007 .

[11]  Richard Kinnersly Discussion: “Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling” (Mahkamov, K., 2006, ASME J. Energy Resour. Technol., 128, pp. 203–215) , 2007 .

[12]  King Leung Wong,et al.  A numerical study on the effects of moving regenerator to the performance of a β-type Stirling engine , 2015 .

[13]  Wen Lih Chen,et al.  A CFD parametric study on the performance of a low-temperature-differential γ-type Stirling engine , 2015 .

[14]  Khamid Mahkamov Closure to “Discussion: ‘Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling’ ” (2007, ASME J. Energy Resour. Technol., 129, pp. 278, 279, 280) , 2007 .

[15]  J. A. Esnaola,et al.  Numerical study of the heat transfer in wound woven wire matrix of a Stirling regenerator , 2014 .

[16]  W. Chen,et al.  A study on the effects of geometric parameters in a low-temperature-differential γ-type Stirling engine using CFD , 2017 .

[17]  Wen Lih Chen,et al.  A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a β-type Stirling engine , 2014 .

[18]  Chin-Hsiang Cheng,et al.  Numerical simulation of thermal and flow fields inside a 1-kW beta-type Stirling engine , 2017 .

[19]  Dawei Tang,et al.  Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers , 2014 .