First-order Judd-Ofelt optical characterization of DNA-Ln3+ complexes

Complexes formed of deoxyribose nucleic acid (DNA) and trivalent lanthanide ions (Ln3+) promise a combination of high optical gain and low optical loss in an organic polymer host matrix. However, there has been some dispute about the binding mechanism between the DNA helix and the positively-charged lanthanide ions. Here we introduce an attempt to resolve the mechanism for binding through Judd-Ofelt analysis on DNA-Eu3+, DNA-Tb3+, and DNA-Sm3+ to first order. From initial Judd-Ofelt parameters extrapolations can be made to the line strengths, Einstein coefficients, and fluorescence lifetimes.

[1]  D. Devine,et al.  RE-activated lanthanide phosphate phosphors for PDP applications , 2000 .

[2]  Baldassare Di Bartolo,et al.  Advances in spectroscopy for lasers and sensing , 2006 .

[3]  Markus P. Hehlen,et al.  50th anniversary of the Judd–Ofelt theory: An experimentalist's view of the formalism and its application , 2013 .

[4]  G. Racah,et al.  Theory of Complex Spectra. IV , 1942 .

[5]  Hongjie Zhang,et al.  Hybrid materials based on lanthanide organic complexes: a review. , 2013, Chemical Society reviews.

[6]  Shigeo Kuboniwa,et al.  Luminescent Properties of Tb 3+ in Oxygen-Dominated Compounds , 1972 .

[7]  B. Walsh Judd-Ofelt theory: principles and practices , 2006 .

[8]  Xinwan Li,et al.  DNA optical nanofibers: preparation and characterization. , 2012, Optics express.

[9]  G. Shortley,et al.  The Theory of Complex Spectra II , 2022 .

[10]  Emily M. Heckman,et al.  Performance of an electro-optic waveguide modulator fabricated using a deoxyribonucleic-acid-based biopolymer , 2006 .

[11]  ANDREW J. STECKL,et al.  DNA – a new material for photonics? , 2007 .

[12]  Emily M. Heckman,et al.  Development of an all-DNA-surfactant electro-optic modulator , 2006, SPIE OPTO.

[13]  Francois Kajzar,et al.  DNA based materials doped with praseodymium (III) hydroxide nanoparticles , 2016 .

[14]  E. Pun,et al.  Optical Amplification in Eu $^{3+}$-Doped DNA-Based Biopolymer , 2011, IEEE Photonics Technology Letters.

[15]  J. S. Lee,et al.  A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal ions. , 1993, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[16]  K. Binnemans Interpretation of europium(III) spectra , 2015 .

[17]  Emily M. Heckman,et al.  Processing techniques for deoxyribonucleic acid: Biopolymer for photonics applications , 2005 .

[18]  Francois Kajzar,et al.  Pure DNA as an Efficient Electron Blocking Layer , 2014 .

[19]  Emily M. Heckman,et al.  Novel cationic dye and crosslinkable surfactant for DNA biophotonics , 2012, Other Conferences.

[20]  Hiroshi Tsukube,et al.  Lanthanide complexes in molecular recognition and chirality sensing of biological substrates. , 2002, Chemical reviews.

[21]  James G. Grote,et al.  Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer , 2006 .

[22]  Masatsugu Shimomura,et al.  Anisotropic Electric Conductivity in an Aligned DNA Cast Film , 1998 .

[23]  Zhou Yu,et al.  Stimulated emission of sulforhodamine 640 doped DNA distributed feedback (DFB) laser devices , 2007, SPIE OPTO.

[24]  B. R. Judd,et al.  Double‐Tensor Operators for Configurations of Equivalent Electrons , 1962 .

[25]  Ileana Rau,et al.  MICROEMULSIONS BASED TEMPLATES FOR SYNTHESIS OF DNA MATERIALS MODIFIED WITH LANTHANIDE NANOPARTICLES , 2015 .

[26]  Yuji Wada,et al.  Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications , 2004 .

[27]  Sreekantha Reddy Dugasani,et al.  Morphological and Optoelectronic Characteristics of Double and Triple Lanthanide Ion-Doped DNA Thin Films. , 2016, ACS applied materials & interfaces.

[28]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[29]  Jung-Il Jin,et al.  Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs , 2012 .

[30]  K. Rajnak,et al.  Spectral Intensities of the Trivalent Lanthanides and Actinides in Solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+ , 1968 .

[31]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[32]  Rute A. S. Ferreira,et al.  Electro-optical properties of the DNA-Eu3+ bio-membranes , 2013 .

[33]  Chulki Kim,et al.  Tunable near white light photoluminescence of lanthanide ion (Dy3+, Eu3+ and Tb3+) doped DNA lattices , 2015 .

[34]  Yasuhiro Koike,et al.  Plastic optical fiber lasers and amplifiers containing lanthanide complexes. , 2002, Chemical reviews.