An adaptive scheme for chaotic synchronization in the presence of uncertain parameter and disturbances

Recently, several schemes have been proposed in the literature to synchronize chaotic systems. However, in most of these approaches, the presence of uncertain parameters and external disturbances were not considered. Motivated by the above consideration, this paper proposes an adaptive methodology to synchronize any chaotic system with unified chaotic systems, even if bounded disturbances are present. The proposed controller is composed of both variable proportional and adaptive control actions for guaranteeing the convergence of the residual synchronization error to zero in the presence of disturbances. Two possible modifications are considered: 1) only adaptive control action is implemented to overcome the well-known assumption of prior knowledge of upper bounds to compensate for the disturbances, and 2) the control gain of the proportional part is saturated, when the residual synchronization error has, practically, been removed. Lyapunov theory, in combination with Barbalats Lemma, is used to design the proposed controller. Experimental simulations are provided to show the effectiveness of the proposed controller and its advantages, when compared with a recent work in the literature.

[1]  M. Mossa Al-sawalha,et al.  Robust active sliding mode anti-synchronization of hyperchaotic systems with uncertainties and external disturbances , 2012 .

[2]  José Manoel Balthazar,et al.  Synchronization of the unified chaotic system and application in secure communication , 2009 .

[3]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[4]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II: The Mapping Approach , 1983 .

[5]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[6]  Guoliang Cai,et al.  Dynamic analysis and control of a new hyperchaotic finance system , 2012 .

[7]  Guiyuan Fu,et al.  Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance , 2012 .

[8]  王发强,et al.  Hyperchaos evolved from the Liu chaotic system , 2006 .

[9]  Guoliang Cai,et al.  A New Finance Chaotic Attractor , 2007 .

[10]  Guanrong Chen,et al.  Controlling a unified chaotic system to hyperchaotic , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Petros A. Ioannou,et al.  Robust Adaptive Control , 2012 .

[12]  Lan Chen,et al.  Study on chaos synchronization in the Belousov–Zhabotinsky chemical system , 2003 .

[13]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[14]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[15]  Chuandong Li,et al.  Chaos control and synchronization via a novel chatter free sliding mode control strategy , 2011, Neurocomputing.

[16]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[17]  Binoy Krishna Roy,et al.  Synchronization and anti-synchronization of Lu and Bhalekar–Gejji chaotic systems using nonlinear active control , 2014 .

[18]  O. Rössler An equation for hyperchaos , 1979 .

[19]  M. Polycarpou,et al.  On the existence and uniqueness of solutions in adaptive control systems , 1993, IEEE Trans. Autom. Control..

[20]  C.K. Tse,et al.  A study of synchronization in chaotic autonomous Cuk DC/DC converters , 2000 .

[21]  P. Olver Nonlinear Systems , 2013 .

[22]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[23]  M. Yahyazadeh,et al.  Synchronization of chaotic systems with known and unknown parameters using a modified active sliding mode control. , 2011, ISA transactions.

[24]  Wei Zhang,et al.  Chaos control and synchronization of unified chaotic systems via linear control , 2009 .

[25]  Branislav Jovic Synchronization Techniques for Chaotic Communication Systems , 2011 .

[26]  Simin Yu,et al.  Generating hyperchaotic Lü attractor via state feedback control , 2006 .

[27]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[28]  Mohammad Pourmahmood Aghababa,et al.  Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities , 2012 .

[29]  E. Mosekilde,et al.  Chaotic Synchronization: Applications to Living Systems , 2002 .

[30]  Jinde Cao,et al.  Synchronization of a chaotic electronic circuit system with cubic term via adaptive feedback control , 2009 .

[31]  O. Rössler An equation for continuous chaos , 1976 .

[32]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[33]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[34]  Josek A. R Vargas Stability Analysis of A Neuro-Identification Scheme with Asymptotic Convergence , 2012 .

[35]  Suwat Kuntanapreeda,et al.  Adaptive synchronization of hyperchaotic systems via passivity feedback control with time-varying gains , 2010 .

[36]  A. N. Njah,et al.  Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques , 2010 .

[37]  E. Hemerly,et al.  Observação adaptativa neural com convergência assintótica na presença de parâmetros variantes no tempo e distúrbios , 2008 .

[38]  F. T. Arecchia,et al.  Homoclinic chaos in a laser : synchronization and its implications in biological systems , 2001 .

[39]  Ju H. Park On synchronization of unified chaotic systems via nonlinear Control , 2005 .

[40]  Wolfgang A. Halang,et al.  Analog Chaos-based Secure Communications and Cryptanalysis: A Brief Survey , 2007, ArXiv.

[41]  Jesus M. Gonzalez-miranda,et al.  Synchronization And Control Of Chaos: An Introduction For Scientists And Engineers , 2004 .

[42]  Sohrab Khanmohammadi,et al.  Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller , 2011 .

[43]  Fei Yu,et al.  Complete switched modified function projective synchronization of a five-term chaotic system with uncertain parameters and disturbances , 2013 .

[44]  Jiang Bin,et al.  Sliding mode synchronization controller design with neural network for uncertain chaotic systems , 2009 .

[45]  Guanrong Chen,et al.  Generating Hyperchaos via State Feedback Control , 2005, Int. J. Bifurc. Chaos.