A deeper view of the CoRoT-9 planetary system. A small non-zero eccentricity for CoRoT-9b likely generated by planet-planet scattering

CoRoT-9b is one of the rare long-period (P=95.3 days) transiting giant planets with a measured mass known to date. We present a new analysis of the CoRoT-9 system based on five years of radial-velocity (RV) monitoring with HARPS and three new space-based transits observed with CoRoT and Spitzer. Combining our new data with already-published measurements we redetermine the CoRoT-9 system parameters and find good agreement with the published values. We uncover a higher significance for CoRoT-9b's small but non-zero eccentricity ($e=0.133^{+0.042}_{-0.037}$) and find no evidence for additional planets in the system. We use simulations of planet-planet scattering to show that CoRoT-9b's eccentricity may have been generated by an instability in which a $\sim 50~M_\oplus$ planet was ejected from the system. This scattering would not have produced a spin-orbit misalignment, so we predict that CoRoT-9b's orbit should lie within a few degrees of the initial plane of the protoplanetary disk. As a consequence, any significant stellar obliquity would indicate that the disk was primordially tilted.

[1]  Matthew Pressman In press , 1995, TESOL Quarterly.

[2]  C. Moutou,et al.  Search for rings and satellites around the exoplanet CoRoT-9b using Spitzer photometry , 2017, 1705.01836.

[3]  G. H'ebrard,et al.  The GAPS Programme with HARPS-N at TNG - XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets , 2017, 1704.00373.

[4]  H. Perets,et al.  Secular dynamics of multiplanet systems: Implications for the formation of hot and warm Jupiters via high-eccentricity migration , 2016, 1606.07438.

[5]  S. Tremaine,et al.  WARM JUPITERS FROM SECULAR PLANET–PLANET INTERACTIONS , 2016, 1604.00010.

[6]  Chelsea X. Huang,et al.  WARM JUPITERS ARE LESS LONELY THAN HOT JUPITERS: CLOSE NEIGHBORS , 2016, 1601.05095.

[7]  S. Hinkley,et al.  STATISTICS OF LONG PERIOD GAS GIANT PLANETS IN KNOWN PLANETARY SYSTEMS , 2015, 1601.07595.

[8]  P. Bodenheimer,et al.  IN SITU FORMATION AND DYNAMICAL EVOLUTION OF HOT JUPITER SYSTEMS , 2015, 1511.09157.

[9]  T. Guillot,et al.  SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period , 2015, 1511.00643.

[10]  Santiago,et al.  The HARPS search for southern extra-solar planets. XXXVIII. Bayesian re-analysis of three systems. New super-Earths, unconfirmed signals, and magnetic cycles , 2015, 1510.06446.

[11]  F. Pepe,et al.  The GAPS Programme with HARPS-N@TNG VI: The Curious Case of TrES-4b , 2015, 1501.06403.

[12]  S. Raymond,et al.  GAS GIANT PLANETS AS DYNAMICAL BARRIERS TO INWARD-MIGRATING SUPER-EARTHS , 2015, 1501.06308.

[13]  A. Santerne,et al.  Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N , 2015, 1501.02653.

[14]  G. Montagnier,et al.  SOPHIE velocimetry of Kepler transit candidates XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system , 2014, 1411.3934.

[15]  E. Chiang,et al.  A class of warm Jupiters with mutually inclined, apsidally misaligned close friends , 2014, Science.

[16]  A. Johansen,et al.  Separating gas-giant and ice-giant planets by halting pebble accretion , 2014, 1408.6087.

[17]  F. Marzari,et al.  TRADES: A new software to derive orbital parameters from observed transit times and radial velocities - Revisiting Kepler-11 and Kepler-9 , 2014, 1408.2844.

[18]  Marseille,et al.  Revisiting the transits of CoRoT-7b at a lower activity level , 2014, 1407.8099.

[19]  S. Raymond,et al.  Hot super-Earths and giant planet cores from different migration histories , 2014, 1407.6011.

[20]  E. Agol,et al.  ATMOSPHERIC CHARACTERIZATION OF THE HOT JUPITER KEPLER-13Ab , 2014, 1403.6831.

[21]  D. Lai Star–disc–binary interactions in protoplanetary disc systems and primordial spin–orbit misalignments , 2014, 1402.1907.

[22]  S. Tremaine,et al.  SCATTERING OUTCOMES OF CLOSE-IN PLANETS: CONSTRAINTS ON PLANET MIGRATION , 2014, 1401.4457.

[23]  Ioannis Ntzoufras,et al.  On the use of marginal posteriors in marginal likelihood estimation via importance sampling , 2013, Comput. Stat. Data Anal..

[24]  C. Moutou,et al.  SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant candidates , 2012, 1206.0601.

[25]  F. Adams,et al.  MAGNETIC AND GRAVITATIONAL DISK–STAR INTERACTIONS: AN INTERDEPENDENCE OF PMS STELLAR ROTATION RATES AND SPIN–ORBIT MISALIGNMENTS , 2013, 1310.2179.

[26]  A. Correia,et al.  A semi-empirical stability criterion for real planetary systems with eccentric orbits , 2013, 1309.6861.

[27]  P. Armitage,et al.  A limit on eccentricity growth from global 3D simulations of disc-planet interactions , 2012, 1210.6035.

[28]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[29]  K. Batygin A primordial origin for misalignments between stellar spin axes and planetary orbits , 2012, Nature.

[30]  Antonino Francesco Lanza,et al.  Detection of Neptune-size planetary candidates with CoRoT data. Comparison with the planet occurrence rate derived from Kepler , 2012, 1209.4815.

[31]  J. Crepp,et al.  THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. II. KOI-1474.01, A CANDIDATE ECCENTRIC PLANET PERTURBED BY AN UNSEEN COMPANION , 2012, 1206.5579.

[32]  A. Santerne,et al.  SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant candidates , 2012, 1206.0601.

[33]  W. Kley,et al.  Planet-Disk Interaction and Orbital Evolution , 2012, 1203.1184.

[34]  Antonino Francesco Lanza,et al.  Multiwavelength flux variations induced by stellar magnetic activity: effects on planetary transits , 2012, 1201.3514.

[35]  S. Raymond,et al.  Planet–planet scattering alone cannot explain the free-floating planet population , 2012, 1201.2175.

[36]  Y. Alibert,et al.  Extrasolar planet population synthesis - IV. Correlations with disk metallicity, mass, and lifetime , 2012, 1201.1036.

[37]  D. Nesvorný,et al.  MULTIPLE-PLANET SCATTERING AND THE ORIGIN OF HOT JUPITERS , 2011, 1110.4392.

[38]  Sara Seager,et al.  LACK OF INFLATED RADII FOR KEPLER GIANT PLANET CANDIDATES RECEIVING MODEST STELLAR IRRADIATION , 2011, 1110.6180.

[39]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[40]  Pierre Le Sidaner,et al.  Defining and cataloging exoplanets: the exoplanet.eu database , 2011, 1106.0586.

[41]  S. Bloemen,et al.  Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems , 2011 .

[42]  A. Moro-martin,et al.  Debris disks as signposts of terrestrial planet formation , 2011, 1104.0007.

[43]  Y. Lithwick,et al.  SECULAR CHAOS AND THE PRODUCTION OF HOT JUPITERS , 2010, 1012.3475.

[44]  F. Foucart,et al.  Evolution of spin direction of accreting magnetic protostars and spin-orbit misalignment in exoplanetary systems , 2010, Proceedings of the International Astronomical Union.

[45]  B. Bitsch,et al.  Orbital evolution of eccentric planets in radiative discs , 2010, 1008.2656.

[46]  Antonino Francesco Lanza,et al.  Transiting exoplanets from the CoRoT space mission - X. CoRoT-10b: a giant planet in a 13.24 day eccentric orbit , 2010, 1006.2949.

[47]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[48]  F. Marzari,et al.  Planet–planet scattering in circumstellar gas disks , 2010, 1005.0710.

[49]  C. Moutou,et al.  Observation of the full 12-hour-long transit of the exoplanet HD80606b. Warm-Spitzer photometry and SOPHIE spectroscopy , 2010, 1004.0790.

[50]  C. Moutou,et al.  A transiting giant planet with a temperature between 250 K and 430 K , 2010, Nature.

[51]  Sean N. Raymond,et al.  PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS , 2010, 1001.3409.

[52]  G. Lodato,et al.  Chaotic star formation and the alignment of stellar rotation with disc and planetary orbital axes , 2009, 0909.4255.

[53]  H. J. Deeg,et al.  The CoRoT space mission : early results Special feature Ground-based photometry of space-based transit detections : photometric follow-up of the CoRoT mission , 2009 .

[54]  S. Ida,et al.  N-BODY SIMULATIONS OF PLANETARY ACCRETION AROUND M DWARF STARS , 2009, 0904.4543.

[55]  C. Moutou,et al.  Noise properties of the CoRoT ? data A planet-finding perspective , 2009, 0903.1829.

[56]  Antonino Francesco Lanza,et al.  Modelling solar-like variability for the detection of Earth-like planetary transits - II. Performance of the three-spot modelling, harmonic function fitting, iterative nonlinear filtering, and sliding boxcar filtering , 2008, 0812.1667.

[57]  A. Bloch,et al.  Turbulence Implies that Mean Motion Resonances are Rare , 2008 .

[58]  R. Nelson,et al.  Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc , 2008, 0811.4322.

[59]  M. Nagasawa,et al.  Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism , 2008, 0801.1368.

[60]  E. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[61]  E. Ford,et al.  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[62]  Avi M. Mandell,et al.  Observable consequences of planet formation models in systems with close-in terrestrial planets , 2007, 0711.2015.

[63]  Massachusetts Institute of Technology,et al.  Improving Stellar and Planetary Parameters of Transiting Planet Systems: The Case of TrES-2 , 2007, 0704.2938.

[64]  S. Tremaine,et al.  Dynamical Origin of Extrasolar Planet Eccentricity Distribution , 2007, astro-ph/0703160.

[65]  Avi M. Mandell,et al.  Formation of Earth-like Planets During and After Giant Planet Migration , 2007, astro-ph/0701048.

[66]  A. Baglin,et al.  The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding , 2006 .

[67]  Avi M. Mandell,et al.  Exotic Earths: Forming Habitable Worlds with Giant Planet Migration , 2006, Science.

[68]  Cajo J. F. ter Braak,et al.  A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces , 2006, Stat. Comput..

[69]  Jack J. Lissauer,et al.  Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core , 2005 .

[70]  J. Papaloizou,et al.  Planet formation and migration , 2005, astro-ph/0510487.

[71]  W. Kley,et al.  Disk eccentricity and embedded planets , 2005, astro-ph/0510393.

[72]  P. Gregory A Bayesian Analysis of Extrasolar Planet Data for HD 73526 , 2005 .

[73]  S. J. Aarseth,et al.  Origin and Ubiquity of Short-Period Earth-like Planets: Evidence for the Sequential Accretion Theory of Planet Formation , 2005, astro-ph/0508305.

[74]  R. Nelson,et al.  Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration , 2005, astro-ph/0507180.

[75]  K. Rice,et al.  Protostars and Planets V , 2005 .

[76]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[77]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[78]  Hidekazu Tanaka,et al.  Three-dimensional Interaction between a Planet and an Isothermal Gaseous Disk. II. Eccentricity Waves and Bending Waves , 2004 .

[79]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[80]  F. Adams,et al.  Migration and dynamical relaxation in crowded systems of giant planets , 2003, astro-ph/0301561.

[81]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[82]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets VII - Two short-period Saturnian companions to HD 108147 and HD 168746 , 2002, astro-ph/0202457.

[83]  K. Nakazawa,et al.  Formation of Giant Planets in Dense Nebulae: Critical Core Mass Revisited , 2001 .

[84]  E. Ford,et al.  Dynamical Instabilities in Extrasolar Planetary Systems Containing Two Giant Planets , 2000, astro-ph/0010178.

[85]  J. Papaloizou,et al.  Orbital eccentricity growth through disc-companion tidal interaction , 2001 .

[86]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[87]  A. Boss,et al.  Protostars and Planets , 1998, Science.

[88]  Eric B. Ford,et al.  Dynamical Instabilities and the Formation of Extrasolar Planetary Systems , 1996, Science.

[89]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[90]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[91]  Brett Gladman,et al.  Dynamics of Systems of Two Close Planets , 1993 .

[92]  D. Lin,et al.  On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets , 1986 .

[93]  W. Ward Density waves in the solar nebula: Diffential Lindblad torque , 1986 .

[94]  Christian Marchal,et al.  Hill stability and distance curves for the general three-body problem , 1982 .

[95]  Peter Goldreich,et al.  Disk-Satellite Interactions , 1980 .

[96]  V. Safronov,et al.  Relative sizes of the largest bodies during the accumulation of planets , 1969 .