AN AXIOMATIC APPROACH TO NUMERICAL APPROXIMATIONS OF STOCHASTIC PROCESSES

An axiomatic approach to the numerical approximation Y of some stochastic process X with values on a separable Hilbert space H is presented by means of Lyapunov-type control functions V . The processes X and Y are interpreted as flows of stochastic differential and difference equations, respectively. The main result is the proof of some extensions of well-known deterministic principle of Kantorovich-Lax-Richtmeyer to approximate solutions of initial value differential problems to the stochastic case. The concepts of invariance, smoothness of martingale parts, consistency, stability, and contractivity of stochastic processes are uniquely combined to derive efficient convergence rates on finite and infinite time-intervals. The applicability of our results is explained with drift-implicit backward Euler methods applied to ordinary stochastic differential equations (SDEs) driven by standard Wiener processes on Euclidean spaces H = Rd along functions such as V (x) = ki=0 cix. A detailed discussion on an example with cubic nonlinearity from field theory in physics (stochastic Ginzburg-Landau equation) illustrates the suggested axiomatic approach.

[1]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  N. Krylov Itô stochastic integral , 2002 .

[3]  A. Shiryaev,et al.  Probability (2nd ed.) , 1995, Technometrics.

[4]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[5]  Henri Schurz GENERAL THEOREMS FOR NUMERICAL APPROXIMATION OF STOCHASTIC PROCESSES ON THE HILBERT SPACEH2((0;T );; IR d ) , 2003 .

[6]  Andrew M. Stuart,et al.  Strong Convergence of Euler-Type Methods for Nonlinear Stochastic Differential Equations , 2002, SIAM J. Numer. Anal..

[7]  N. Bouleau,et al.  Numerical methods for stochastic processes , 1993 .

[8]  Peter E. Kloeden,et al.  The Numerical Solution of Nonlinear Stochastic Dynamical Systems: a Brief Introduction , 1991 .

[9]  H. Schurz,et al.  GENERAL THEOREMS FOR NUMERICAL APPROXIMATION OF STOCHASTIC PROCESSES ON THE HILBERT SPACE IR , 2002 .

[10]  Marc Barton-Smith,et al.  Global Solution for a Stochastic Ginzburg-Landau Equation with Multiplicative Noise , 2004 .

[11]  E. Platen,et al.  Balanced Implicit Methods for Stiff Stochastic Systems , 1998 .

[12]  Shang‐keng Ma Modern Theory of Critical Phenomena , 1976 .

[13]  H. Schurz Asymptotical mean square stability of an equilibrium point of some linear numerical solutions with multiplicative noise , 1996 .

[14]  S. Cerrai Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term , 2003 .

[15]  G. Winkler,et al.  The Stochastic Integral , 1990 .

[16]  D. Talay,et al.  Discretization and simulation of stochastic differential equations , 1985 .

[17]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[18]  H. Schurz STABILITY OF NUMERICAL METHODS FOR ORDINARY STOCHASTIC DIFFERENTIAL EQUATIONS ALONG LYAPUNOV-TYPE AND OTHER FUNCTIONS WITH VARIABLE STEP SIZES , 2022 .

[19]  Yaozhong Hu Semi-Implicit Euler-Maruyama Scheme for Stiff Stochastic Equations , 1996 .

[20]  Shooting Methods for Numerical Solution of Stochastic Boundary-Value Problems , 2004 .

[21]  D. Talay Second-order discretization schemes of stochastic differential systems for the computation of the invariant law , 1990 .

[22]  L. Kantorovich,et al.  Functional analysis and applied mathematics , 1963 .

[23]  Henri Schurz,et al.  The Invariance of Asymptotic Laws of Linear Stochastic Systems under Discretization , 1999 .

[24]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[25]  S. Zacks,et al.  Introduction to stochastic differential equations , 1988 .

[26]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[27]  G. Milstein Numerical Integration of Stochastic Differential Equations , 1994 .

[28]  P. Protter Stochastic integration and differential equations , 1990 .

[29]  R. Lefever,et al.  Noise in nonlinear dynamical systems: Noise-induced transitions , 1989 .

[30]  Denis Talay,et al.  Simulation of stochastic differential systems , 1995 .

[31]  R D Richtmyek,et al.  Survey of the Stability of Linear Finite Difference Equations , 2022 .

[32]  R. Khasminskii Stochastic Stability of Differential Equations , 1980 .

[33]  H. Schurz Moment attractivity, stability and contractivity exponents of stochastic dynamical systems , 2001 .

[34]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[35]  I. Gyöngy A note on Euler's Approximations , 1998 .

[36]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[37]  N. Krylov Introduction to the theory of diffusion processes , 1994 .

[38]  P. Kloeden,et al.  Numerical Solution of Sde Through Computer Experiments , 1993 .

[39]  H. Schurz Preservation of probabilistic laws through Euler methods for ornstein-uhlenbeck process , 1999 .

[40]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[41]  Eckhard Platen,et al.  Approximation of itô integral equations , 1980 .

[42]  S. Godunov,et al.  Difference Schemes: An Introduction to the Underlying Theory , 1987 .

[43]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[44]  Henri Schurz,et al.  Numerical Regularization for SDEs: Construction of Nonnegative Solutions , 1995 .

[45]  H. Schurz Stability, stationarity, and boundedness of some implicit numerical methods for stochastic differential equations and applications , 1997 .