A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

[1]  Diego González-Aguilera,et al.  An automatic procedure for co-registration of terrestrial laser scanners and digital cameras , 2009 .

[2]  J. Hyyppä,et al.  Range and AGC normalization in airborne discrete-return LiDAR intensity data for forest canopies , 2010 .

[3]  Michael J. Olsen,et al.  Individual snag detection using neighborhood attribute filtered airborne lidar data , 2015 .

[4]  Yin Lu Young,et al.  Damage Assessment of the 2010 Chile Earthquake and Tsunami Using Terrestrial Laser Scanning , 2012 .

[5]  Roberto Manduchi,et al.  Supervised Parametric Classification of Aerial LiDAR Data , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[6]  Giordano Teza,et al.  Effects of surface irregularities on intensity data from laser scanning: an experimental approach , 2008 .

[7]  Juha Hyyppä,et al.  Correcting Airborne Laser Scanning Intensity Data for Automatic Gain Control Effect , 2010, IEEE Geoscience and Remote Sensing Letters.

[8]  Teemu Hakala,et al.  Correction of Intensity Incidence Angle Effect in Terrestrial Laser Scanning , 2013 .

[9]  Boris Jutzi,et al.  NORMALIZATION OF LIDAR INTENSITY DATA BASED ON RANGE AND SURFACE INCIDENCE ANGLE , 2009 .

[10]  N. Pfeifer,et al.  Analysis of the backscattered energy in terrestrial laser scanning data , 2008 .

[11]  Hans-Gerd Maas,et al.  REFERENCE VALUE PROVISION SCHEMES FOR ATTENUATION CORRECTION OF FULL-WAVEFORM AIRBORNE LASER SCANNER DATA , 2015 .

[12]  Andrea Masiero,et al.  SEMI-AUTOMATED DETECTION OF SURFACE DEGRADATION ON BRIDGES BASED ON A LEVEL SET METHOD , 2015 .

[13]  Wolfgang Wagner,et al.  Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts , 2010 .

[14]  Cheng Wang,et al.  Using mobile laser scanning data for automated extraction of road markings , 2014 .

[15]  Ants Vain,et al.  Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data , 2009, Sensors.

[16]  Diego González-Aguilera,et al.  Terrestrial laser scanning intensity data applied to damage detection for historical buildings , 2010 .

[17]  Kiyun Yu,et al.  Assessing the Possibility of Landcover Classification Using Lidar Intensity Data , 2002 .

[18]  Craig L. Glennie,et al.  Synthesis of Transportation Applications of Mobile LIDAR , 2013, Remote. Sens..

[19]  Joong Yong Park,et al.  Use of SHOALS bottom reflectance images to constrain the inversion of a hyperspectral radiative transfer model , 2004, SPIE Defense + Commercial Sensing.

[20]  Juha Hyyppä,et al.  Radiometric Calibration of LIDAR Intensity With Commercially Available Reference Targets , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Sisi Zlatanova,et al.  Automatic Registration of Terrestrial Laser Scanning Point Clouds using Panoramic Reflectance Images , 2009, Sensors.

[22]  Andrew J. Graettinger,et al.  Cluster-Based Roof Covering Damage Detection in Ground-Based Lidar Data , 2015 .

[23]  Abbas Abedinia,et al.  AN INVESTIGATION INTO THE REGISTRATION OF LIDAR INTENSITY DATA AND AERIAL IMAGES USING THE SIFT APPROACH , 2008 .

[24]  Arthur P. Cracknell,et al.  Airborne lidar bathymetry , 1986 .

[25]  Andrew M. Johnson,et al.  Operational Considerations for Terrestrial Laser Scanner Use in Highway Construction Applications , 2012 .

[26]  Joong Yong Park,et al.  Seafloor and Land Cover Classification Through Airborne Lidar and Hyperspectral Data Fusion , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[27]  Chi-Kuei Wang,et al.  Using airborne bathymetric lidar to detect bottom type variation in shallow waters , 2007 .

[28]  Grady Tuell,et al.  New Procedure for Estimating Field-of-View Loss in Bathymetric Lidar , 2013 .

[29]  Zheng Niu,et al.  Characterizing Radiometric Attributes of Point Cloud Using a Normalized Reflective Factor Derived From Small Footprint LiDAR Waveform , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Hans-Gerd Maas,et al.  CORRECTING ATTENUATION EFFECTS CAUSED BY INTERACTIONS IN THE FOREST CANOPY IN FULL-WAVEFORM AIRBORNE LASER SCANNER DATA , 2014 .

[31]  Falko Kuester,et al.  Optical techniques for multiscale damage assessment , 2013 .

[32]  J. Shan,et al.  Topographic laser ranging and scanning : principles and processing , 2008 .

[33]  Michael J. Olsen,et al.  Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest , 2012 .

[34]  Andrew J. Graettinger,et al.  Laser Scanning Intensity Analysis for Automated Building Wind Damage Detection , 2015 .

[35]  Ove Steinvall,et al.  Depth sounding lidar: an overview of Swedish activities and future prospects , 1996, Other Conferences.

[36]  T. Webster,et al.  Object-oriented land cover classification of lidar-derived surfaces , 2006 .

[37]  Sanna Kaasalainen,et al.  Aperture size effects on backscatter intensity measurements in Earth and space remote sensing. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  Lijun Xu,et al.  Bidirectional reflectance distribution function based surface modeling of non-Lambertian using intensity data of light detection and ranging. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  Antero Kukko,et al.  Effect of incidence angle on laser scanner intensity and surface data. , 2008, Applied optics.

[40]  Claus Brenner,et al.  POINT BASED REGISTRATION OF TERRESTRIAL LASER DATA USING INTENSITY AND GEOMETRY FEATURES , 2008 .

[41]  Demetrios Gatziolis Dynamic Range-based Intensity Normalization for Airborne, Discrete Return Lidar Data of Forest Canopies , 2011 .

[42]  Harri Kaartinen,et al.  SNOW COVER CHANGE DETECTION WITH LASER SCANNING RANGE AND BRIGHTNESS MEASUREMENTS , 2008 .

[43]  M. Favalli,et al.  Lava flow identification and aging by means of lidar intensity: Mount Etna case , 2007 .

[44]  Juha Hyyppä,et al.  Calibration of the optech ALTM-3100 laser scanner intensity data using brightness targets , 2006 .

[45]  Fabio Remondino,et al.  AUTOMATIC REGISTRATION OF MULTIPLE LASER SCANS USING PANORAMIC RGB AND INTENSITY IMAGES , 2012 .

[46]  Anttoni Jaakkola,et al.  Analysis of Incidence Angle and Distance Effects on Terrestrial Laser Scanner Intensity: Search for Correction Methods , 2011, Remote. Sens..

[47]  Bernard Long,et al.  AIRBORNE LIDAR BATHYMETRY APPLIED TO COASTAL HYDRODYNAMIC PROCESSES , 2011 .

[48]  Sagi Filin,et al.  Extraction of Objects from Terrestrial Laser Scans by Integrating Geometry Image and Intensity Data with Demonstration on Trees , 2012, Remote. Sens..

[49]  Feng Li,et al.  Critical Assessment of Detecting Asphalt Pavement Cracks under Different Lighting and Low Intensity Contrast Conditions Using Emerging 3D Laser Technology , 2012 .

[50]  Jerome F. Hajjar,et al.  Damage Detection on Structures Using Texture Mapped Laser Point Clouds , 2014 .

[51]  J. Hyyppä,et al.  Automatic detection of buildings from laser scanner data for map updating , 2003 .

[52]  Jen-Yu Han,et al.  Feature Conjugation for Intensity-Coded LIDAR Point Clouds , 2013 .

[53]  Laura Chasmer,et al.  Examining the Influence of Changing Laser Pulse Repetition Frequencies on Conifer Forest Canopy Returns , 2006 .

[54]  Grady Tuell,et al.  Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background , 2005, SPIE Optics + Photonics.

[55]  Falko Kuester,et al.  Terrestrial Laser Scanning-Based Structural Damage Assessment , 2010, J. Comput. Civ. Eng..

[56]  N. Pfeifer,et al.  INVESTIGATING TERRESTRIAL LASER SCANNING INTENSITY DATA : QUALITY AND FUNCTIONAL RELATIONS , 2007 .

[57]  Ayman F. Habib,et al.  Geometric Calibration and Radiometric Correction of LiDAR Data and Their Impact on the Quality of Derived Products , 2011, Sensors.

[58]  Ibon Galparsoro,et al.  Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery , 2008 .

[59]  E. G. Parmehr,et al.  Automatic registration of optical imagery with 3D LiDAR data using statistical similarity , 2014 .

[60]  Ana Paula Kersting,et al.  Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction , 2012 .

[61]  N. Pfeifer,et al.  Correction of laser scanning intensity data: Data and model-driven approaches , 2007 .

[62]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[63]  Vinod Ramnath,et al.  Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data , 2005, SPIE Optics + Photonics.

[64]  Wu Chen,et al.  Combination of overlap-driven adjustment and Phong model for LiDAR intensity correction , 2013 .

[65]  David Hernández-López,et al.  A robust and hierarchical approach for the automatic co-registration of intensity and visible images , 2012 .

[66]  P. Sterzai,et al.  Radiometric correction in laser scanning , 2006 .

[67]  Craig L. Glennie,et al.  Empirical Waveform Decomposition and Radiometric Calibration of a Terrestrial Full-Waveform Laser Scanner , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Vinod Ramnath,et al.  SHOALS-enabled 3D benthic mapping , 2005 .

[69]  Bisheng Yang,et al.  Automated Extraction of Road Markings from Mobile Lidar Point Clouds , 2012 .

[70]  Alireza G. Kashani Automated assessment of tornado-induced building damage based on terrestrial laser scanning , 2014 .

[71]  Megan W. Lang,et al.  Lidar intensity for improved detection of inundation below the forest canopy , 2009, Wetlands.

[72]  J. Brasington,et al.  Object-based land cover classification using airborne LiDAR , 2008 .

[73]  Alan H. Strahler,et al.  Quantifying the Attenuation Due to Geometry Interactions in Waveform Lidar Signals , 2013 .

[74]  Norbert Pfeifer,et al.  RADIOMETRIC CALIBRATION OF MULTI-WAVELENGTH AIRBORNE LASER SCANNING DATA , 2012 .

[75]  Gunho Sohn,et al.  Classification of SHOALS 3000 bathymetric LiDAR signals using decision tree and ensemble techniques , 2009, IEEE Toronto International Conference Science and Technology for Humanity.

[76]  Ahmed Shaker,et al.  Radiometric Correction and Normalization of Airborne LiDAR Intensity Data for Improving Land-Cover Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[77]  J. Hyyppä,et al.  Radiometric Calibration of Full-waveform Small-footprint Airborne Laser Scanners , 2008 .

[78]  Derek D. Lichti,et al.  Error Models and Propagation in Directly Georeferenced Terrestrial Laser Scanner Networks , 2005 .

[79]  Michael J. Olsen,et al.  Evaluation of Technologies for Road Profile Capture, Analysis, and Evaluation , 2015 .

[80]  Susanne Becker,et al.  Automatic Marker-Free Registration of Terrestrial Laser Scans using Reflectance Features , 2007 .

[81]  Harri Kaartinen,et al.  Remote Sensing Radiometric Calibration of Terrestrial Laser Scanners with External Reference Targets , 2022 .

[82]  M. Hodgson,et al.  Object-Based Land Cover Classification Using High-Posting-Density LiDAR Data , 2008 .

[83]  C. E. Harris,et al.  Laser Radar Systems , 1991 .

[84]  Sean W. MacFaden,et al.  High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis , 2012 .

[85]  B. Devereux,et al.  Evaluating the potential of high‐resolution airborne LiDAR data in glaciology , 2006 .

[86]  Danilo Schneider,et al.  ANALYSIS AND CORRECTION OF THE DEPENDENCY BETWEEN LASER SCANNER INTENSITY VALUES AND RANGE , 2014 .

[87]  Austin Troy,et al.  Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study , 2009 .

[88]  J.Y. Park,et al.  Fusion of SHOALS bathymetric lidar and passive spectral data for shallow water rapid environmental assessment , 2005, Europe Oceans 2005.

[89]  S. Filin,et al.  GEOMETRY-IMAGE-INTENSITY COMBINED FEATURES FOR REGISTRATION OF TERRESTRIAL LASER SCANS , 2010 .

[90]  Pengfei Liu,et al.  Automated extraction of manhole covers using mobile LiDAR data , 2014 .

[91]  Brian L. F. Daku,et al.  A model based approach to intensity normalization for terrestrial laser scanners , 2011, International Symposium on Lidar and Radar Mapping Technologies.

[92]  Gary C. Guenther,et al.  AIRBORNE LIDAR BATHYMETRY , 2004 .

[93]  Peter P. Flaig,et al.  Lidar intensity as a remote sensor of rock properties , 2011 .

[94]  Tee-Ann Teo,et al.  Empirical Radiometric Normalization of Road Points from Terrestrial Mobile Lidar System , 2015, Remote. Sens..

[95]  William Philpot,et al.  Using SHOALS LIDAR system to detect bottom material change , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[96]  Fan Zhang,et al.  Intensity Correction of Terrestrial Laser Scanning Data by Estimating Laser Transmission Function , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[97]  Philippe Archambault,et al.  Mapping the Shallow Water Seabed Habitat With the SHOALS , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[98]  Yi Lin,et al.  Geometry and intensity based culvert detection in mobile laser scanning point clouds , 2010 .

[99]  Alexander Wong,et al.  Efficient FFT-Accelerated Approach to Invariant Optical–LIDAR Registration , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[100]  Emmanuel P. Baltsavias,et al.  Airborne laser scanning: basic relations and formulas , 1999 .