Shell structure of the neutron-rich isotopes Co69,71,73

The structures of the neutron-rich Co69,71,73 isotopes were investigated via (p,2p) knockout reactions at the Radioactive Isotope Beam Factory, RIKEN. Isotopes of interest were studied using the DALI2 γ-ray detector array combined with the MINOS target and tracker system. Level schemes were reconstructed using the γ-γ coincidence technique, with tentative spin-parity assignments based on the measured inclusive and exclusive cross sections. Comparison with shell-model calculations using the Lenzi-Nowacki-Poves-Sieja LNPS and PFSDG-U interactions suggests coexistence of spherical and deformed shapes at low excitation energies in the Co69,71,73 isotopes. The distorted-wave impulse approximation (DWIA) framework was used to calculate the single-particle cross sections. These values were compared with the experimental findings.

[1]  T. Miyazaki,et al.  78Ni revealed as a doubly magic stronghold against nuclear deformation , 2019, Nature.

[2]  T. Noro,et al.  Proton-induced knockout reactions with polarized and unpolarized beams , 2017 .

[3]  T. Otsuka,et al.  Quantum Phase Transition in the Shape of Zr isotopes. , 2016, Physical review letters.

[4]  F. Nowacki,et al.  Shape Coexistence in ^{78}Ni as the Portal to the Fifth Island of Inversion. , 2016, Physical review letters.

[5]  A. D. Ayangeakaa,et al.  New low-energy 0+ state and shape coexistence in Ni 70 , 2015 .

[6]  T. Miyazaki,et al.  Extension of the N=40 Island of Inversion towards N=50: Spectroscopy of (66)Cr, (70,72)Fe. , 2015, Physical review letters.

[7]  M. Carpenter,et al.  Analogous intruder behavior near Ni, Sn, and Pb isotopes , 2015 .

[8]  S. Lenzi,et al.  Collective features of Cr and Fe isotopes , 2014 .

[9]  S. Takeuchi,et al.  DALI2: A NaI(Tl) detector array for measurements of $\gamma$ rays from fast nuclei , 2014 .

[10]  T. Otsuka,et al.  Shape coexistence in Ni-68 , 2014 .

[11]  A. Giganon,et al.  MINOS: A vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei , 2014 .

[12]  T. Otsuka,et al.  Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure , 2013, 1309.5851.

[13]  N. Fukuda,et al.  Identification and separation of radioactive isotope beams by the BigRIPS separator at the RIKEN RI Beam Factory , 2013, 1310.8351.

[14]  M. Yahiro,et al.  Mass-number and isotope dependence of local microscopic optical potentials for polarized proton scattering , 2013, 1304.7884.

[15]  Ikuko Hamamoto-Kuroda Neutron shell structure and deformation in neutron-drip-line nuclei , 2012 .

[16]  D. Bazzacco,et al.  Spectroscopy of odd-mass cobalt isotopes toward the N=40 subshell closure and shell-model description of spherical and deformed states , 2012 .

[17]  J. Wood,et al.  Shape coexistence in atomic nuclei , 2011 .

[18]  B. A. Brown,et al.  Nuclear spins, magnetic moments, and quadrupole moments of Cu isotopes from N=28 to N=46: Probes for core polarization effects , 2010, 1011.5420.

[19]  K. Sieja,et al.  Island of inversion around Cr-64 , 2010 .

[20]  Hiroshi Suzuki,et al.  BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory , 2009 .

[21]  J. Stone,et al.  Structure of Co-65,Co-67 studied through the beta decay of Fe-65,Fe-67 and a deep- inelastic reaction , 2009, 0903.1606.

[22]  I. Stefanescu,et al.  Shape Isomerism at N = 40: Discovery of a Proton Intruder in 67Co , 2008, 0807.2595.

[23]  W. Mittig,et al.  Shell evolution and the N = 34 “magic number” , 2007 .

[24]  B. A. Brown,et al.  Magic numbers in the neutron-rich oxygen isotopes , 2005 .

[25]  H. Sagawa,et al.  Evolution of deformations in medium-mass nuclei , 2005, nucl-th/0510086.

[26]  A. Ozawa,et al.  High-rate particle identification of high-energy heavy ions using a tilted electrode gas ionization chamber , 2005 .

[27]  F. Nowacki,et al.  The shell model as a unified view of nuclear structure , 2004, nucl-th/0402046.

[28]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[29]  C. Samanta,et al.  Experimental evidence of core modification in the near drip-line nucleus 23O. , 2002, Physical review letters.

[30]  I. Tanihata,et al.  Delay-line PPAC for high-energy light ions , 2001 .

[31]  Suzuki,et al.  New magic number, N = 16, near the neutron drip line , 2000, Physical review letters.

[32]  Rico,et al.  N=40 neutron subshell closure in the 68Ni nucleus. , 1995, Physical review letters.

[33]  K. Knöpfle,et al.  Study of proton-hole states in 63Cu and 63Co (I). Spectroscopy of (d, 3He) reactions at Ed = 52MeV , 1991 .

[34]  I. Talmi,et al.  Shell-model foundations of the interacting boson model , 1987 .

[35]  Love,et al.  Nucleon-nucleon t-matrix interaction for scattering at intermediate energies. , 1985, Physical review. C, Nuclear physics.

[36]  J. Vermeulen,et al.  Proton hole states in 63Co and 63Cu , 1979 .

[37]  R. N. Glover,et al.  The structure of 61Co , 1971 .

[38]  D. D. Armstrong,et al.  ( t , He 4 ) Reaction on the Even Ni Isotopes , 1966 .