Variable selection via Gibbs sampling
暂无分享,去创建一个
[1] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[2] D. Spiegelhalter,et al. Bayes Factors and Choice Criteria for Linear Models , 1980 .
[3] D. Madigan,et al. Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .
[4] Richard F. Gunst,et al. Applied Regression Analysis , 1999, Technometrics.
[5] S. E. Hills,et al. Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .
[6] L. Wasserman,et al. Bayesian analysis of outlier problems using the Gibbs sampler , 1991 .
[7] M. Braga,et al. Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..
[8] D. Spiegelhalter,et al. Bayes Factors for Linear and Log‐Linear Models with Vague Prior Information , 1982 .
[9] L. R. Pericchi,et al. An alternative to the standard Bayesian procedure for discrimination between normal linear models , 1984 .
[10] C. Robert,et al. Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .
[11] Leland Stewart,et al. Hierarchical Bayesian Analysis using Monte Carlo Integration: Computing Posterior Distributions when , 1987 .
[12] G. Casella,et al. Explaining the Gibbs Sampler , 1992 .
[13] A. Zellner. Posterior odds ratios for regression hypotheses : General considerations and some specific results , 1981 .
[14] A. Atkinson. Subset Selection in Regression , 1992 .
[15] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[16] Ehsan S. Soofi,et al. Effects of collinearity on information about regression coefficients , 1990 .