Variable selection via Gibbs sampling

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to Journal of the American Statistical Association.

[1]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[2]  D. Spiegelhalter,et al.  Bayes Factors and Choice Criteria for Linear Models , 1980 .

[3]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[4]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[5]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[6]  L. Wasserman,et al.  Bayesian analysis of outlier problems using the Gibbs sampler , 1991 .

[7]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[8]  D. Spiegelhalter,et al.  Bayes Factors for Linear and Log‐Linear Models with Vague Prior Information , 1982 .

[9]  L. R. Pericchi,et al.  An alternative to the standard Bayesian procedure for discrimination between normal linear models , 1984 .

[10]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[11]  Leland Stewart,et al.  Hierarchical Bayesian Analysis using Monte Carlo Integration: Computing Posterior Distributions when , 1987 .

[12]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[13]  A. Zellner Posterior odds ratios for regression hypotheses : General considerations and some specific results , 1981 .

[14]  A. Atkinson Subset Selection in Regression , 1992 .

[15]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[16]  Ehsan S. Soofi,et al.  Effects of collinearity on information about regression coefficients , 1990 .