Volumetric ablation rendering

In this paper, we propose a physically-based method for simulating the process of ablation on volumetric models. We demonstrate the visual effect of ablative processes, such as a beam of heat emitted from a blow torch or a pencil of sand expelled from a sandblaster. Users are able to control ablative properties, such as energy propagation, absorption, and material evaporation, via a simple transfer function interface, while the effect of different beam shapes can be modeled by ways of weighting functions.Continuous evaporation of material to expose interior object features can eliminate smooth object boundary layers required for good gradient estimation. To prevent this adverse effect, our method leaves the original volume intact and instead operates on a smooth energy volume. The renderer then uses the energy volume to determine the current, smooth object boundaries, for the opacity and gradient calculations, while the original volume provides the visual material properties, such as color and shading coefficients.

[1]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[2]  Issei Fujishiro,et al.  Volume Graphics Modeling of Ice Thawing , 2001, VG.

[3]  Issei Fujishiro,et al.  A Morphological Approach to Volume Synthesis of Weathered Stones , 2000, Volume Graphics.

[4]  Arie E. Kaufman,et al.  Interactive flowing of highly viscous volumes in virtual environments , 2003, IEEE Virtual Reality, 2003. Proceedings..

[5]  Arie E. Kaufman,et al.  Object voxelization by filtering , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[6]  Scott A. King,et al.  Fast Volume Rendering and Animation of Amorphous Phenomena , 2000, Volume Graphics.

[7]  M. Bauer,et al.  Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization , 2000, Workshop on Graphics Hardware.

[8]  Richard H. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer , 1984 .

[9]  Ming Ouhyoung,et al.  A Real-time 3D Virtual Sculpting Tool Based on Modified Marching Cubes , 2001 .

[10]  E. C. Pollard,et al.  Physics, An Introduction , 1972 .

[11]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[12]  Klaus Mueller,et al.  Simulating fire with texture splats , 2002, IEEE Visualization, 2002. VIS 2002..

[13]  Anselmo Lastra,et al.  Physically-based visual simulation on graphics hardware , 2002, HWWS '02.

[14]  Xin Li,et al.  Modeling soil: realtime dynamic models for soil slippage and manipulation , 1993, SIGGRAPH.

[15]  Alan Edelman,et al.  Modeling and rendering of weathered stone , 1999, SIGGRAPH.

[16]  Martin Kraus,et al.  High-quality pre-integrated volume rendering using hardware-accelerated pixel shading , 2001, HWWS '01.

[17]  Jay Boleman,et al.  Physics: An introduction , 1985 .

[18]  Huang,et al.  Multiple-step melting in two-dimensional hexatic liquid-crystal films , 1998, Science.

[19]  Arie E. Kaufman,et al.  Melting and flowing of viscous volumes , 2003, Proceedings 11th IEEE International Workshop on Program Comprehension.

[20]  Ronald N. Perry,et al.  Kizamu: a system for sculpting digital characters , 2001, SIGGRAPH.

[21]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[22]  John F. Hughes,et al.  Sculpting: an interactive volumetric modeling technique , 1991, SIGGRAPH.

[23]  S.F.F. Gibson,et al.  Using distance maps for accurate surface representation in sampled volumes , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[24]  Jessica K. Hodgins,et al.  Animating Sand, Mud, and Snow , 1999, Comput. Graph. Forum.

[25]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.