Sharp power mean bounds for the lemniscate type means

In this paper, we present sharp power mean bounds for the so-called lemniscate type means, which were introduced by Neuman (Math Pannon 18(1):77–94, 2007). The obtained results measure what the distance is between the lemniscate-type means and power means. As applications, several new bounds for the arc lemniscate functions are established.

[1]  Miao-Kun Wang,et al.  Landen inequalities for a class of hypergeometric functions with applications , 2018 .

[2]  Qi Yang,et al.  Data driven confidence intervals for diffusion process using double smoothing empirical likelihood , 2019, J. Comput. Appl. Math..

[3]  B. C. Carlson Algorithms Involving Arithmetic and Geometric Means , 1971 .

[4]  Y. Chu,et al.  Sharp Landen transformation inequalities for hypergeometric functions, with applications , 2019, Journal of Mathematical Analysis and Applications.

[5]  Edward Neuman,et al.  On lemniscate functions , 2013 .

[6]  Yu-Ming Chu,et al.  On approximating the arc lemniscate functions , 2021, Indian Journal of Pure and Applied Mathematics.

[7]  Y. Chu,et al.  On some refinements for inequalities involving zero-balanced hypergeometric function , 2020 .

[8]  Gendi Wang,et al.  Shafer–Fink type inequalities for arc lemniscate functions , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[9]  Chao Chen,et al.  Sharp Shafer-Fink type inequalities for Gauss lemniscate functions , 2014 .

[10]  Zhen-Hang Yang,et al.  Notes on the complete elliptic integral of the first kind , 2020 .

[11]  Y. Chu,et al.  A sharp double inequality involving generalized complete elliptic integral of the first kind , 2020 .

[12]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[13]  Yu-Ming Chu,et al.  Monotonicity and convexity involving generalized elliptic integral of the first kind , 2021, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[14]  Roger W. Barnard,et al.  A Monotonicity Property Involving 3F2 and Comparisons of the Classical Approximations of Elliptical Arc Length , 2000, SIAM J. Math. Anal..

[15]  Tie-Hong Zhao,et al.  Concavity and bounds involving generalized elliptic integral of the first kind , 2021, Journal of Mathematical Inequalities.

[16]  Yu-Ming Chu,et al.  High accuracy asymptotic bounds for the complete elliptic integral of the second kind , 2019, Appl. Math. Comput..

[17]  Y. Chu,et al.  Sharp inequalities involving the power mean and complete elliptic integral of the first kind , 2013 .

[18]  Yue-Ping Jiang,et al.  Concavity of the complete elliptic integrals of the second kind with respect to Hölder means , 2012 .

[19]  Yu-Ming Chu,et al.  Monotonicity properties and bounds involving the complete elliptic integrals of the first kind , 2018 .

[20]  Yu-Ming Chu,et al.  On rational bounds for the gamma function , 2017, Journal of Inequalities and Applications.

[21]  M. Abbas,et al.  A new generalization of some quantum integral inequalities for quantum differentiable convex functions , 2021 .

[22]  Tie-hong Zhao,et al.  Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function , 2020 .

[23]  Yu-Ming Chu,et al.  Logarithmically Complete Monotonicity Properties Relating to the Gamma Function , 2011 .

[24]  Y. Chu,et al.  Refinements of transformation inequalities for zero-balanced hypergeometric functions , 2017 .

[25]  Miao-Kun Wang,et al.  Monotonicity and inequalities involving zero-balanced hypergeometric function , 2019, Mathematical Inequalities & Applications.

[26]  Zhen-Hang Yang,et al.  Sharp rational bounds for the gamma function , 2020 .

[27]  Y. Chu,et al.  Sharp Bounds for the Weighted Hölder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals , 2020, Computational Methods and Function Theory.

[28]  Yu-Ming Chu,et al.  Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions , 2012, 1210.6126.

[29]  Yu-Ming Chu,et al.  Asymptotical formulas for Gaussian and generalized hypergeometric functions , 2016, Appl. Math. Comput..

[30]  M. Noor,et al.  New Hermite-Hadamard type inequalities for exponentially convex functions and applications , 2020, AIMS Mathematics.

[31]  Yu-Ming Chu,et al.  Quadratic transformation inequalities for Gaussian hypergeometric function , 2018, Journal of Inequalities and Applications.

[32]  Chao Chen WILKER AND HUYGENS TYPE INEQUALITIES FOR THE LEMNISCATE FUNCTIONS , 2012 .

[33]  J. Borwein,et al.  Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .