A Roughset Based Ensemble Framework for Network Intrusion Detection System

[1]  Ming-Wen Shao,et al.  Feature subset selection based on fuzzy neighborhood rough sets , 2016, Knowl. Based Syst..

[2]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[3]  C. Xiang,et al.  Design of mnitiple-level tree classifiers for intrusion detection system , 2004, IEEE Conference on Cybernetics and Intelligent Systems, 2004..

[4]  Bogdan Trawinski,et al.  Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal , 2010, ACIIDS.

[5]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[6]  Lilly Suriani Affendey,et al.  Intrusion detection using data mining techniques , 2010, 2010 International Conference on Information Retrieval & Knowledge Management (CAMP).

[7]  David A. Cieslak,et al.  Combating imbalance in network intrusion datasets , 2006, 2006 IEEE International Conference on Granular Computing.

[8]  Renuka Devi Thanasekaran A Robust and Efficient Real Time Network Intrusion Detection System Using Artificial Neural Network In Data Mining , 2011 .

[9]  M. Govindarajan,et al.  Intrusion detection using k-Nearest Neighbor , 2009, 2009 First International Conference on Advanced Computing.

[10]  Mohsen Kahani,et al.  Incremental Hybrid Intrusion Detection Using Ensemble of Weak Classifiers , 2008 .

[11]  Deokjai Choi,et al.  Application of Data Mining to Network Intrusion Detection: Classifier Selection Model , 2008, APNOMS.

[12]  Hui Wang,et al.  A novel intrusion detection method based on improved SVM by combining PCA and PSO , 2011, Wuhan University Journal of Natural Sciences.

[13]  Snehal A. Mulay,et al.  Intrusion Detection System using Support Vector Machine and Decision Tree , 2010 .

[14]  Xin Yao,et al.  A Survey on Evolutionary Computation Approaches to Feature Selection , 2016, IEEE Transactions on Evolutionary Computation.

[15]  Andrew H. Sung,et al.  Intrusion detection using neural networks and support vector machines , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[16]  Andrew H. Sung,et al.  Intrusion detection using an ensemble of intelligent paradigms , 2005, J. Netw. Comput. Appl..

[17]  Hari Om,et al.  A hybrid system for reducing the false alarm rate of anomaly intrusion detection system , 2012, 2012 1st International Conference on Recent Advances in Information Technology (RAIT).

[18]  Zdzisław Pawlak,et al.  Rough set theory and its applications , 2002, Journal of Telecommunications and Information Technology.

[19]  W. Yassin,et al.  Intrusion detection based on K-Means clustering and Naïve Bayes classification , 2011, 2011 7th International Conference on Information Technology in Asia.

[20]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Nur Izura Udzir,et al.  Intrusion detection based on k-means clustering and OneR classification , 2011, 2011 7th International Conference on Information Assurance and Security (IAS).

[22]  Ali A. Ghorbani,et al.  A detailed analysis of the KDD CUP 99 data set , 2009, 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications.

[23]  Mohammad Zulkernine,et al.  Random-Forests-Based Network Intrusion Detection Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[24]  Ester Yen,et al.  Data mining-based intrusion detectors , 2009, Expert Syst. Appl..

[25]  Qiang Shen,et al.  Rough set-aided keyword reduction for text categorization , 2001, Appl. Artif. Intell..