Quantum indistinguishability by path identity and with undetected photons

Two photon-pair creation processes can be arranged such that the paths of the emitted photons are identical. Thereby the path information is not erased but is never born in the first place. In addition to its implications for fundamental physics, this concept has recently led to a series of discoveries in the fields of imaging, spectroscopy, and quantum information science. Here we present the idea of path identity and provide a comprehensive review of the recent developments.

[1]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[2]  Guang-Can Guo,et al.  Coherent manipulation of a three-dimensional maximally entangled state , 2018, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[3]  E. Wolf Coherence properties of partially polarized electromagnetic radiation , 1959 .

[4]  Laura Mančinska,et al.  Multidimensional quantum entanglement with large-scale integrated optics , 2018, Science.

[5]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[6]  P. Zoller,et al.  Laser-driven atoms in half-cavities , 2002 .

[7]  M. Lukin,et al.  Generation and manipulation of Schrödinger cat states in Rydberg atom arrays , 2019, Science.

[8]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[9]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[10]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[11]  L. Krivitsky,et al.  Tunable optical coherence tomography in the infrared range using visible photons , 2017, 1710.02343.

[12]  U. Yurtsever,et al.  Signalling, entanglement and quantum evolution beyond Cauchy horizons , 2003, gr-qc/0409112.

[13]  Scott Aaronson,et al.  A linear-optical proof that the permanent is #P-hard , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  A. Zeilinger,et al.  Quantum gate description for induced coherence without induced emission and its applications , 2017, 1707.05855.

[15]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[16]  Gangjun Liu,et al.  Optical Coherence Tomography Angiography , 2016, Investigative ophthalmology & visual science.

[17]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[18]  Mario Krenn,et al.  Entanglement by Path Identity. , 2016, Physical review letters.

[19]  Igor Jex,et al.  Gaussian Boson sampling , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[20]  M. Padgett,et al.  Orbital angular momentum: origins, behavior and applications , 2011 .

[21]  A. Aspect An atomic Hong-Ou-Mandel experiment , 2014 .

[22]  Terry Rudolph,et al.  Why I am optimistic about the silicon-photonic route to quantum computing , 2016, 1607.08535.

[23]  Alba Cervera-Lierta,et al.  Quantum circuits for maximally entangled states , 2019, Physical Review A.

[24]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[25]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[26]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[27]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[28]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[29]  R. Glauber Quantum Theory of Optical Coherence , 2006 .

[30]  F. Schmidt-Kaler,et al.  Light interference from single atoms and their mirror images , 2001, Nature.

[31]  L. Mandel,et al.  New technique for controlling the degree of coherence of two light beams , 1992 .

[32]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[33]  Ming Li,et al.  On-chip transverse-mode entangled photon pair source , 2018, npj Quantum Information.

[34]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[35]  D. Deppe,et al.  Optically-coupled mirror-quantum well InGaAs-GaAs light emitting diode , 1990 .

[36]  Robert Fickler,et al.  Twisted photons: new quantum perspectives in high dimensions , 2017, Light: Science & Applications.

[37]  Jian-Wei Pan,et al.  18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. , 2018, Physical review letters.

[38]  N. Gisin,et al.  Violation of Bell Inequalities by Photons More Than 10 km Apart , 1998, quant-ph/9806043.

[39]  A. Zeilinger,et al.  Multiparticle Interferometry and the Superposition Principle , 1993 .

[40]  A. Zeilinger,et al.  High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments. , 2017, Physical review letters.

[41]  Maria V. Chekhova,et al.  Nonlinear interferometers in quantum optics , 2016 .

[42]  J. Rarity,et al.  Experimental violation of Bell's inequality based on phase and momentum. , 1990, Physical review letters.

[43]  J. Lynn,et al.  Neutron Interferometry: Lessons in Experimental Quantum Mechanics , 2002 .

[44]  Carlos H. Monken,et al.  Transfer of angular spectrum and image formation in spontaneous parametric down-conversion , 1998 .

[45]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[46]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[47]  Pu Jian,et al.  Programmable unitary spatial mode manipulation. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[48]  Jian-Wei Pan,et al.  12-Photon Entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion. , 2018, Physical review letters.

[49]  P. Onorato,et al.  Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school , 2017 .

[50]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[51]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[52]  Robert Fickler,et al.  High-dimensional quantum gates using full-field spatial modes of photons , 2019, Optica.

[53]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[54]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[55]  P. Lett Correlated photons for correlated atoms , 2004 .

[56]  L. Krivitsky,et al.  Nonlinear infrared spectroscopy free from spectral selection , 2016, Scientific Reports.

[57]  Xuemei Gu,et al.  Questions on the Structure of Perfect Matchings Inspired by Quantum Physics , 2019, Proceedings of the 2nd Croatian Combinatorial Days.

[58]  Mario Krenn,et al.  Path identity as a source of high-dimensional entanglement , 2020, Proceedings of the National Academy of Sciences.

[59]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[60]  Luis,et al.  SU(2) coherent states in parametric down-conversion. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[61]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[62]  A. Zeilinger,et al.  Twin-photon correlations in single-photon interference , 2016, 1610.04298.

[63]  Nicolas K. Fontaine,et al.  Laguerre-Gaussian mode sorter , 2018, Nature Communications.

[64]  Barbosa,et al.  Control of visibility in the interference of signal photons by delays imposed on the idler photons. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[65]  Anton Zeilinger,et al.  Theory of quantum imaging with undetected photons , 2015, 1504.00402.

[66]  Abner Shimony,et al.  Two-particle interferometry , 1990, Nature.

[67]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[68]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[69]  Meschede,et al.  Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. , 1987, Physical review letters.

[70]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[71]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[72]  M. Cho,et al.  Quantum optical measurements with undetected photons through vacuum field indistinguishability , 2017, Scientific Reports.

[73]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[74]  J. Raimond,et al.  Observation of cavity-enhanced single-atom spontaneous emission , 1983 .

[75]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[76]  Nicolai Friis,et al.  Entanglement certification from theory to experiment , 2018, Nature Reviews Physics.

[77]  William K. Wootters,et al.  Complementarity in the double-slit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle , 1979 .

[78]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[79]  S. Pancharatnam,et al.  Generalized theory of interference, and its applications , 1956 .

[80]  Robert Fickler,et al.  Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits , 2012 .

[81]  Mandel,et al.  Observation of nonclassical effects in the interference of two photons. , 1987, Physical review letters.

[82]  Philippe Emplit,et al.  Frequency Bin Entangled Photons , 2009, 0910.1325.

[83]  Mario Krenn,et al.  Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits , 2018, Nature Photonics.

[84]  Geoff J. Pryde,et al.  Photonic quantum information processing: A concise review , 2019, Applied Physics Reviews.

[85]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[86]  L. Mandel,et al.  Induced coherence without induced emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[87]  W. Rubens On the tripartite entanglement of three qubits and the entropy of STU black holes , 2009 .

[88]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[89]  Jan Perina,et al.  Quantum dynamics and statistics of two coupled down-conversion processes , 2000 .

[90]  B. Englert,et al.  Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.

[91]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[92]  D. Klyshko Ramsey interference in two-photon parameteric scattering , 1993 .

[93]  Mario Krenn,et al.  Quantum experiments and graphs. III. High-dimensional and multiparticle entanglement , 2018, Physical Review A.

[94]  Optical sectioning in induced coherence tomography with frequency-entangled photons , 2017, 1708.02905.

[95]  Martin Rötteler,et al.  Improved Quantum Ternary Arithmetics , 2015, ArXiv.

[96]  N. Bohr,et al.  Das Quantenpostulat und die neuere Entwicklung der Atomistik , 1928, Naturwissenschaften.

[97]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[98]  L. Mandel,et al.  Photon Antibunching in Resonance Fluorescence , 1977 .

[99]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[100]  Herzog,et al.  Frustrated two-photon creation via interference. , 1994, Physical review letters.

[101]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[102]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[103]  Mandel,et al.  Observation of quantum interference effects in the frequency domain. , 1992, Physical review letters.

[104]  Comment on "On Phase Selective Quantum Eraser" (arXiv:1501.00817 [quant-ph]) , 2015, 1509.04673.

[105]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.

[106]  Marcel Mayor,et al.  Quantum superposition of molecules beyond 25 kDa , 2019, Nature Physics.

[107]  Mario Krenn,et al.  Quantum experiments and graphs II: Quantum interference, computation, and state generation , 2018, Proceedings of the National Academy of Sciences.

[108]  Jian-Wei Pan,et al.  On-Demand Semiconductor Source of Entangled Photons Which Simultaneously Has High Fidelity, Efficiency, and Indistinguishability. , 2019, Physical review letters.

[109]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[110]  Steinberg,et al.  Three proposed "quantum erasers" , 1994, Physical review. A, Atomic, molecular, and optical physics.

[111]  S. Ataman The quantum optical description of three experiments involving non-linear optics using a graphical method , 2014, 1410.6649.

[112]  P. Milonni,et al.  Complementarity in biphoton generation with stimulated or induced coherence , 2015, 1506.00457.

[113]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[114]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[115]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[116]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[117]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[118]  E. R. Caianiello,et al.  On quantum field theory — I: explicit solution of Dyson’s equation in electrodynamics without use of feynman graphs , 1953 .

[119]  Parametric Down-Conversion Experiments in the Wigner Representation , 1997 .

[120]  Weidong Tang,et al.  Multisetting Greenberger-Horne-Zeilinger paradoxes , 2013, 1303.6740.

[121]  Robert W Boyd,et al.  Quantum and classical coincidence imaging. , 2004, Physical review letters.

[122]  L. Krivitsky,et al.  Hyperspectral infrared microscopy with visible light , 2020, Science Advances.

[123]  Anton Zeilinger,et al.  Quantum imaging with undetected photons , 2014, Nature.

[124]  Johannes Kofler,et al.  Delayed-choice gedanken experiments and their realizations , 2014, 1407.2930.

[125]  Johannes Kofler,et al.  Experimental generation of single photons via active multiplexing , 2010, 1007.4798.

[126]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[127]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[128]  A. Zeilinger,et al.  Quantifying the momentum correlation between two light beams by detecting one , 2016, Proceedings of the National Academy of Sciences.

[129]  Mark G. Thompson,et al.  Programmable four-photon graph states on a silicon chip , 2018, Nature Communications.

[130]  Girish Kulkarni,et al.  Transfer of temporal coherence in parametric down-conversion , 2017, 1704.01786.

[131]  John F. Clauser,et al.  Experimental distinction between the quantum and classical field - theoretic predictions for the pho , 1973 .

[132]  C. cohen-tannoudji,et al.  Bose-Einstein Condensation of Metastable Helium , 2001, Physical review letters.

[133]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[134]  J. O'Brien,et al.  Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.

[135]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[136]  R. Boyd,et al.  Controlling induced coherence for quantum imaging , 2017, 1702.07742.

[137]  M. Lahiri Many-particle interferometry and entanglement by path identity , 2018, Physical Review A.

[138]  Sergei P. Kulik,et al.  Infrared spectroscopy with visible light , 2016 .

[139]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[140]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[141]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[142]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[143]  Mario Krenn,et al.  Quantum experiments and hypergraphs: Multiphoton sources for quantum interference, quantum computation, and quantum entanglement , 2020 .

[144]  J. Latorre,et al.  Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices , 2015, 1506.08857.

[145]  Felix Huber,et al.  Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity , 2017, ArXiv.

[146]  M. Brezinski Optical Coherence Tomography: Principles and Applications , 2006 .

[147]  Mandel,et al.  Can an "empty" de Broglie pilot wave induce coherence? , 1992, Physical review letters.

[148]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[149]  M. Lahiri Wave-particle duality and polarization properties of light in single-photon interference experiments , 2011 .

[150]  A. Zeilinger,et al.  Bose-Einstein condensate of metastable helium for quantum correlation experiments , 2014, 1406.1322.

[151]  Andrew G. White,et al.  Generation of optical phase singularities by computer-generated holograms. , 1992, Optics letters.

[152]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[153]  Lucien Hardy,et al.  Source of photons with correlated polarisations and correlated directions , 1992 .

[154]  Horne,et al.  Complementarity of one-particle and two-particle interference. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[155]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[156]  L. Mandel,et al.  Coherence and indistinguishability. , 1991, Optics letters.

[157]  Thomas Feurer,et al.  Shaping frequency entangled qudits , 2013, 1303.6202.

[158]  A. Vaziri,et al.  Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. , 2003, Physical review letters.

[159]  Z. Ou Nonlocal correlation in the realization of a quantum eraser , 1997 .

[160]  Anton Zeilinger,et al.  Partial polarization by quantum distinguishability , 2015, 1510.04192.

[161]  Emil Wolf,et al.  Theory of photoelectric detection of light fluctuations , 1964 .

[162]  M. Żukowski,et al.  Bell's theorem: Proposition of realizable experiment using linear momenta , 1988 .

[163]  A. Zeilinger Complementarity in neutron interferometry , 1986 .

[164]  S. Ataman A graphical method in quantum optics , 2018 .

[165]  Marek Żukowski,et al.  Multisetting Greenberger-Horne-Zeilinger theorem , 2013, 1303.7222.

[166]  Gerardo Adesso,et al.  Nature of light correlations in ghost imaging , 2012, Scientific Reports.

[167]  Stanislav Straupe,et al.  Quantum state engineering with twisted photons via adaptive shaping of the pump beam , 2018, Physical Review A.

[168]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[169]  A. Zeilinger,et al.  Interference Fringes Controlled by Non-Interfering Photons , 2016, 1610.05530.

[170]  Mario Krenn,et al.  Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings. , 2017, Physical review letters.

[171]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[172]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[173]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[174]  Christine Silberhorn,et al.  On-chip generation of photon-triplet states. , 2016, Optics express.

[175]  P. Milonni,et al.  Induced coherence, vacuum fields, and complementarity in biphoton generation. , 2014, Physical review letters.

[176]  A. V. Belinsky,et al.  Interference of classical and non-classical light , 1992 .

[177]  S. Barnett,et al.  Measuring the orbital angular momentum of a single photon. , 2002, Physical review letters.

[178]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[179]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[180]  K. Mølmer,et al.  Induced coherence with and without induced emission , 2000, quant-ph/0001118.

[181]  G. Tóth,et al.  Detection of multipartite entanglement in the vicinity of symmetric Dicke states , 2005, quant-ph/0511237.

[182]  A. Gatti,et al.  Ghost imaging with thermal light: comparing entanglement and classical correlation. , 2004, Physical review letters.

[183]  C. cohen-tannoudji,et al.  Cold and trapped metastable noble gases , 2011, 1110.1361.

[184]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[185]  B. Stuart Infrared Spectroscopy , 2004, Analytical Techniques in Forensic Science.

[186]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[187]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[188]  Juan Miguel Arrazola,et al.  Using Gaussian Boson Sampling to Find Dense Subgraphs. , 2018, Physical review letters.

[189]  Martin Rötteler,et al.  Factoring with Qutrits: Shor's Algorithm on Ternary and Metaplectic Quantum Architectures , 2016, ArXiv.

[190]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[191]  Randall C. Thompson,et al.  Experimental Test of Local Hidden-Variable Theories , 1976 .

[192]  Barbosa,et al.  Spatial properties of spontaneous parametric down-conversion and their effect on induced coherence without induced emission. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[193]  Phase Selective Quantum Eraser , 2015, 1501.00817.

[194]  L. Krivitsky,et al.  Measurement of infrared optical constants with visible photons , 2017, 1706.04739.

[195]  Damien Bonneau,et al.  Observation of nonlinear interference on a silicon photonic chip. , 2019, Optics letters.

[196]  Shmuel Friedland,et al.  Graph isomorphism and Gaussian boson sampling , 2018, 1810.10644.

[197]  Tao Tao,et al.  Three-dimensional entanglement on a silicon chip , 2019, 1911.08807.

[198]  Thomas,et al.  Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. , 1987, Physical review letters.

[199]  D. Kleppner,et al.  Inhibited spontaneous emission by a Rydberg atom. , 1985, Physical review letters.

[200]  W. Kaelin,et al.  A Bose-Einstein Condensate of Metastable Atoms , 2001, Science.

[201]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[202]  Jian-Wei Pan,et al.  Quantum Teleportation in High Dimensions. , 2019, Physical review letters.

[203]  M. J. Padgett,et al.  Bounds and optimisation of orbital angular momentum bandwidths within parametric down-conversion systems , 2011, 1112.3910.

[204]  A. Zeilinger,et al.  Nonclassicality of induced coherence without induced emission , 2017, Physical Review A.

[205]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[206]  D. Markham An Introduction to Entanglement Theory , 2008 .

[207]  Daniel M. Greenberger,et al.  Simultaneous wave and particle knowledge in a neutron interferometer , 1988 .

[208]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[209]  G. Buller,et al.  Imaging high-dimensional spatial entanglement with a camera , 2012, Nature Communications.

[210]  Alán Aspuru-Guzik,et al.  Conceptual Understanding through Efficient Automated Design of Quantum Optical Experiments , 2020, Physical Review X.

[211]  S. Ramelow,et al.  Mid-infrared Frequency-domain Optical Coherence Tomography with Undetected Photons , 2019, Quantum Information and Measurement (QIM) V: Quantum Technologies.

[212]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[213]  A Laing,et al.  Boson sampling from a Gaussian state. , 2014, Physical review letters.

[215]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[216]  Christian Weedbrook,et al.  Gaussian boson sampling for perfect matchings of arbitrary graphs , 2017, Physical Review A.

[217]  L. Mandel,et al.  Induced coherence and indistinguishability in optical interference. , 1991, Physical review letters.

[218]  S. Pancharatnam,et al.  Generalized theory of interference and its applications , 1956 .

[219]  D. Bruß Characterizing Entanglement , 2001, quant-ph/0110078.

[220]  Marcus Huber,et al.  Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems , 2013, 1307.3541.

[221]  Mario Krenn,et al.  Computer-inspired quantum experiments , 2020, Nature Reviews Physics.