Parallel Mesh Generation

Parallel mesh generation is a relatively new research area between the boundaries of two scientific computing disciplines: computational geometry and parallel computing. In this chapter we present a survey of parallel unstructured mesh generation methods. Parallel mesh generation methods decompose the original mesh generation problem into smaller sub-problems which are meshed in parallel. We organize the parallel mesh generation methods in terms of two basic attributes: (1) the sequential technique used for meshing the individual subproblems and (2) the degree of coupling between the subproblems. This survey shows that without compromising in the stability of parallel mesh generation methods it is possible to develop parallel meshing software using off-the-shelf sequential meshing codes. However, more research is required for the efficient use of the state-of-the-art codes which can scale from emerging chip multiprocessors (CMPs) to clusters built from CMPs.

[1]  John E. Savage,et al.  Parallel Refinement of Unstructured Meshes , 1999 .

[2]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[3]  Guy E. Blelloch,et al.  Developing a practical projection-based parallel Delaunay algorithm , 1996, SCG '96.

[4]  Tyng-Ruey Chuang,et al.  Efficient parallel implementations of near Delaunay triangulation with High Performance Fortran , 2004, Concurr. Pract. Exp..

[5]  J. Shewchuk,et al.  Delaunay refinement mesh generation , 1997 .

[6]  Andrey N. Chernikov,et al.  Practical and efficient point insertion scheduling method for parallel guaranteed quality delaunay refinement , 2004, ICS '04.

[7]  Rainald Löhner,et al.  Parallel Advancing Front Grid Generation , 1999, IMR.

[8]  Herbert Edelsbrunner,et al.  Sink-insertion for mesh improvement , 2001, SCG '01.

[9]  Nikos Chrisochoides,et al.  Parallel Delaunay mesh generation kernel , 2003 .

[10]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[11]  Keshav Pingali,et al.  A load balancing framework for adaptive and asynchronous applications , 2004, IEEE Transactions on Parallel and Distributed Systems.

[12]  L. Paul Chew,et al.  Parallel Constrained Delaunay Meshing , 2007 .

[13]  Hugues de Cougny,et al.  Parallel Unstructured Grid Generation , 1998 .

[14]  Nikos Chrisochoides,et al.  Task Parallel Implementation of the Bowyer-Watson Algorithm , 1996 .

[15]  Barry Hilary Valentine Topping,et al.  Parallel and distributed adaptive quadrilateral mesh generation , 1999 .

[16]  M. Saxena,et al.  Parallel fem algorithms based on recursive spatial decomposition—I. Automatic mesh generation , 1992 .

[17]  Jaime Peraire,et al.  Parallel unstructured mesh generation , 1996 .

[18]  Omar Ghattas,et al.  Parallel delaunay refinement mesh generation , 2004 .

[19]  Jack Dongarra,et al.  PVM: Experiences, current status and future direction , 1993, Supercomputing '93. Proceedings.

[20]  Andriy Fedorov,et al.  Parallel decoupled terminal-edge bisection method for 3D mesh generation , 2006, Engineering with Computers.

[21]  Guy E. Blelloch,et al.  Design and Implementation of a Practical Parallel Delaunay Algorithm , 1999, Algorithmica.

[22]  Roy Williams,et al.  Adaptive Parallel Meshes with Complex Geometry , 1991 .

[23]  Timothy J. Tautges,et al.  The parallelization of an advancing-front, all-quadrilateral meshing algorithm for adaptive analysis , 1995 .

[24]  Mark S. Shephard,et al.  Automatic three-dimensional mesh generation by the finite octree technique , 1984 .

[25]  Mark T. Jones,et al.  Parallel algorithms for the adaptive refinement and partitioning of unstructured meshes , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[26]  Leonid Oliker,et al.  Parallel tetrahedral mesh adaptation with dynamic load balancing , 2013, Parallel Comput..

[27]  Dinesh Manocha,et al.  Computing the medial axis of a polyhedron reliably and efficiently , 2000 .

[28]  Jonathan Walpole,et al.  A user-level process package for PVM , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[29]  L. Paul Chew,et al.  Constrained Delaunay triangulations , 1987, SCG '87.

[30]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[31]  Nigel P. Weatherill,et al.  Distributed parallel Delaunay mesh generation , 1999 .

[32]  Kent L. Lawrence,et al.  Simple algorithm for adaptive refinement of three-dimensional finite element tetrahedral meshes , 1995 .

[33]  John R. Rice,et al.  Mapping Algorithms and Software Environment for Data Parallel PDE Iterative Solvers , 1994, J. Parallel Distributed Comput..

[34]  David C. Thompson,et al.  Parallel Mesh Refinement Without Communication , 2004, IMR.

[35]  Raffaele Perego,et al.  Evaluation of parallelization strategies for an incremental Delaunay triangulator in e3 , 1995, Concurr. Pract. Exp..

[36]  M. Rivara,et al.  A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .

[37]  Clemens Kadow Adaptive Dynamic Projection-Based Partitioning for Parallel Delaunay Mesh Generation Algorithms , 2003 .

[38]  Rami G. Melhem,et al.  A Load Balancing Package on Distributed Memory Systems and its Application to Particle-Particle Particle-Mesh (P3M) Methods , 1997, Parallel Comput..

[39]  Joel H. Saltz,et al.  Unstructured scientific computation on scalable multiprocessors , 1992 .

[40]  Rupak Biswas,et al.  A dynamic load balancing framework for unstructured adaptive computations on distributed-memory multiprocessors , 1996, SPAA '96.

[41]  A. Moitra,et al.  Considerations of computational optimality in parallel algorithms for grid generation , 1996 .

[42]  Edsger W. Dijkstra,et al.  Termination Detection for Diffusing Computations , 1980, Inf. Process. Lett..

[43]  I. Beichl,et al.  A data-parallel algorithm for three-dimensional Delaunay triangulation and its implementation , 1993, Supercomputing '93.

[44]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[45]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[46]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[47]  John E. Savage,et al.  PARED: a framework for the adaptive solution of PDEs , 1999, Proceedings. The Eighth International Symposium on High Performance Distributed Computing (Cat. No.99TH8469).

[48]  Alper Üngör,et al.  Parallel Delaunay Refinement: Algorithms and Analyses , 2002, Int. J. Comput. Geom. Appl..

[49]  David R. Jefferson,et al.  Virtual time , 1985, ICPP.

[50]  Jerome Galtier,et al.  Prepartitioning as a way to mesh subdomains in parallel , 1997 .

[51]  Seth Copen Goldstein,et al.  Active messages: a mechanism for integrating communication and computation , 1998, ISCA '98.

[52]  M. Rivara NEW LONGEST-EDGE ALGORITHMS FOR THE REFINEMENT AND/OR IMPROVEMENT OF UNSTRUCTURED TRIANGULATIONS , 1997 .

[53]  Daniel Pizarro-Perez,et al.  Parallel Refinement of Tetrahedral Meshes Using Terminal-Edge Bisection Algorithm , 2004, IMR.

[54]  Leonid Oliker,et al.  PLUM: Parallel Load Balancing for Adaptive Unstructured Meshes , 1998, J. Parallel Distributed Comput..

[55]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[56]  Martin G. Everett,et al.  Parallel Dynamic Graph Partitioning for Adaptive Unstructured Meshes , 1997, J. Parallel Distributed Comput..

[57]  Nikos Chrisochoides,et al.  Guaranteed: quality parallel delaunay refinement for restricted polyhedral domains , 2002, SCG '02.

[58]  John E. Savage,et al.  The Dynamic Adaptation of Parallel Mesh-Based Computation , 1997, PPSC.

[59]  Nikos Chrisochoides,et al.  MULTITHREADED MODEL FOR DYNAMIC LOAD BALANCING PARALLEL ADAPTIVE PDE COMPUTATIONS , 1995 .

[60]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[61]  J PritchardD Concurrency: Practice and Experience , 1991 .

[62]  Andrey N. Chernikov,et al.  Parallel Guaranteed Quality Planar Delaunay Mesh Generation by Concurrent Point Insertion , 2004 .

[63]  M. S. Shephard,et al.  Parallel three-dimensional mesh generation on distributed memory MIMD computers , 2005, Engineering with Computers.

[64]  J. Peraire,et al.  3d Parallel Unstructured Mesh Generation , 1997 .

[65]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[66]  Scott B. Baden,et al.  Parallel Software Abstractions for Structured Adaptive Mesh Methods , 2001, J. Parallel Distributed Comput..

[67]  Vipin Kumar,et al.  Multilevel Diffusion Schemes for Repartitioning of Adaptive Meshes , 1997, J. Parallel Distributed Comput..

[68]  Halit Nebi Gürsoy,et al.  Shape interrogation by medial axis transform for automated analysis , 1989 .

[69]  María Cecilia Rivara,et al.  Terminal-edges Delaunay (small-angle based) algorithm for the quality triangulation problem , 2001, Comput. Aided Des..

[70]  N. P. Chrisochoides,et al.  An alternative to data mapping for parallel PDE solvers: parallel grid generation , 1993, Proceedings of Scalable Parallel Libraries Conference.

[71]  Andrew Sohn,et al.  JOVE: A Dynamic Load Balancing Framework for Adaptive Computations on an SP-2 Distributed-Memory Multiprocessor , 2007 .

[72]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[73]  Mark T. Jones,et al.  An efficient parallel algorithm for mesh smoothing , 1995 .

[74]  Thierry Coupez,et al.  Dynamic load-balancing of finite element applications with the DRAMA library , 2000 .

[75]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[76]  Seth Copen Goldstein,et al.  Active messages: a mechanism for integrating communication and computation , 1998, ISCA '98.

[77]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[78]  Jonathan C. Hardwick Implementation and evaluation of an efficient parallel Delaunay triangulation algorithm , 1997, SPAA '97.

[79]  M. Rivara Selective refinement/derefinement algorithms for sequences of nested triangulations , 1989 .

[80]  M. Shephard,et al.  Parallel volume meshing using face removals and hierarchical repartitioning , 1999 .

[81]  Evan C. Sherbrooke 3-D shape interrogation by medial axis transform , 1996 .

[82]  Scott B. Baden,et al.  Structured Adaptive Mesh Refinement (Samr) Grid Methods , 1999 .

[83]  Yasushi Ito,et al.  Reliable Isotropic Tetrahedral Mesh Generation Based on an Advancing Front Method , 2004, IMR.

[84]  Courtenay T. Vaughan,et al.  Design of dynamic load-balancing tools for parallel applications , 2000, ICS '00.

[85]  Nikos Chrisochoides,et al.  A new approach to parallel mesh generation and partitioning problems , 2002 .

[86]  Alper Üngör,et al.  Time complexity of practical parallel steiner point insertion algorithms , 2004, SPAA '04.

[87]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..