Photovoltaic analysis of the effects of PEDOT:PSS-additives hole selective contacts on the efficiency and lifetime performance of inverted organic solar cells

Abstract Solution processed inverted organic photovoltaics (OPVs) usually use (Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) PEDOT:PSS derivatives as hole selective contact. In this study the effect of different PEDOT:PSS formulations, Al4083, PH and PH500 in inverted structured OPVs is investigated. Through detailed device physics analysis PEDOT:PSS PH is proposed as most suitable hole selective contact for inverted OPVs device function. Furthermore, PEDOT:PSS PH hole selective contact is treated with 3 different wetting agents, Zonyl FS-300 fluorosurfactant (Zonyl), 2,5,8,11-tetramethyl-6-dodecyn-5,8-diol ethoxylate (Dynol) and Zonyl:Dynol mixture and the corresponding non-encapsulated inverted OPVs investigated under accelerated humidity lifetime conditions. The inverted OPVs incorporating PEDOT:PSS:Zonyl hole selective contact shown limitations on humidity lifetime performance due to the poorest adhesion properties of Zonyl-treated PEDOT:PSS PH compared with Dynol and Zonyl/Dynol mixture treaded PEDOT:PSS PH.

[1]  Scott A. Mauger,et al.  Directional dependence of electron blocking in PEDOT:PSS , 2012 .

[2]  G. Malliaras,et al.  Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes , 1998 .

[3]  Hyun‐Kon Song,et al.  The effect of introducing a buffer layer to polymer solar cells on cell efficiency , 2011 .

[4]  Martijn Kemerink,et al.  Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol , 2008 .

[5]  Ziyang Hu,et al.  Effects of solvent-treated PEDOT:PSS on organic photovoltaic devices , 2014 .

[6]  Christoph J. Brabec,et al.  Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact , 2006 .

[7]  Suren A. Gevorgyan,et al.  Degradation patterns in water and oxygen of an inverted polymer solar cell. , 2010, Journal of the American Chemical Society.

[8]  Donal D. C. Bradley,et al.  Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates , 2011 .

[9]  Marios Neophytou,et al.  Synergistic effects of buffer layer processing additives for enhanced hole carrier selectivity in inverted Organic Photovoltaics , 2013 .

[10]  D. Bradley,et al.  The Effect of Organic and Metal Oxide Interfacial layers on the Performance of Inverted Organic Photovoltaics , 2013 .

[11]  Miao Xu,et al.  Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure , 2012, Nature Photonics.

[12]  Mikkel Jørgensen,et al.  Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode , 2011 .

[13]  R. Dauskardt,et al.  The effect of anneal, solar irradiation and humidity on the adhesion/cohesion properties of P3HT:PCBM based inverted polymer solar cells , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.

[14]  M. Halik,et al.  Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers , 2013 .

[15]  Yang Yang,et al.  On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment , 2004 .

[16]  Anastasia L. Elias,et al.  Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells , 2013 .

[17]  M. Kokonou,et al.  Investigating electrodes degradation in organic photovoltaics through reverse engineering under accelerated humidity lifetime conditions , 2014 .

[18]  M. Frey,et al.  Effects of solvents on the morphology and conductivity of poly(3,4‐ethylenedioxythiophene):Poly(styrenesulfonate) nanofibers , 2014 .

[19]  A. Savva,et al.  Cesium-doped zinc oxide as electron selective contact in inverted organic photovoltaics , 2013 .

[20]  C. Brabec,et al.  High Fill Factor Polymer Solar Cells Incorporating a Low Temperature Solution Processed WO3 Hole Extraction Layer , 2012 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Chih‐Ping Chen,et al.  High‐Performance and Highly Durable Inverted Organic Photovoltaics Embedding Solution‐Processable Vanadium Oxides as an Interfacial Hole‐Transporting Layer , 2011, Advanced materials.

[23]  Thomas Riedl,et al.  Solution processed metal-oxides for organic electronic devices , 2013 .

[24]  D. Bradley,et al.  Degradation of organic solar cells due to air exposure , 2006 .

[25]  Y. Kim,et al.  Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post‐Treatment for ITO‐Free Organic Solar Cells , 2011 .

[26]  John R. Reynolds,et al.  High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells , 2011, Nature Photonics.

[27]  M. Schrader,et al.  Young-Dupre Revisited , 1995 .

[28]  Zhenan Bao,et al.  Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes , 2012 .

[29]  C. Brabec,et al.  Electron Barrier Formation at the Organic‐Back Contact Interface is the First Step in Thermal Degradation of Polymer Solar Cells , 2014 .

[30]  Christoph J. Brabec,et al.  Design of the Solution‐Processed Intermediate Layer by Engineering for Inverted Organic Multi junction Solar Cells , 2013 .

[31]  Klaus Meerholz,et al.  Influence of the anodic work function on the performance of organic solar cells. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  John H Xin,et al.  Modification of Conductive Polymer for Polymeric Anodes of Flexible Organic Light-Emitting Diodes , 2009, Nanoscale research letters.

[33]  Joachim Luther,et al.  Influence of a novel fluorosurfactant modified PEDOT:PSS hole transport layer on the performance of inverted organic solar cells , 2012 .

[34]  Christoph J. Brabec,et al.  Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime , 2008 .

[35]  R. Dauskardt,et al.  Adhesion properties of inverted polymer solarcells: Processing and film structure parameters , 2013 .

[36]  Suren A. Gevorgyan,et al.  Stability of Polymer Solar Cells , 2012, Advanced materials.

[37]  Michael Niggemann,et al.  Organic solar cells using inverted layer sequence , 2005 .

[38]  P. J. Estrup,et al.  Noise and the Kelvin method , 1991 .

[39]  H. Yan,et al.  Effect of solvent on PEDOT/PSS nanometer-scaled thin films: XPS and STEM/AFM studies , 2009 .

[40]  J. Nelson The physics of solar cells , 2003 .

[41]  Jaehoon Jeong,et al.  ON THE STABILITY OF POLYMER SOLAR CELLS , 2012 .

[42]  F. Krebs,et al.  Roll-to-roll processed polymer tandem solar cells partially processed from water , 2012 .

[43]  Christoph J. Brabec,et al.  Material and device concepts for organic photovoltaics: towards competitive efficiencies , 2004 .