Local Topological Parameters in a Tetrahedral Representation

Abstract This paper deals with topological properties of sets of tetrahedra (“tetrahedral representations” of three-dimensional objects). Classes of such representations which we call normal and strongly normal are defined and some of their basic properties are established. Computationally efficient methods of counting the cavities and tunnels in the neighborhood of a tetrahedron are defined. A characterization of a simple tetrahedron is formulated, and an efficient approach is developed to identifying simple tetrahedra and computing measures of the local topological change when a tetrahedron is deleted.

[1]  Bidyut Baran Chaudhuri,et al.  Detection of 3-D Simple Points for Topology Preserving Transformations with Application to Thinning , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Cherng Min Ma,et al.  On topology preservation in 3D thinning , 1994 .

[3]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[4]  A. W. Roscoe,et al.  Concepts of digital topology , 1992 .

[5]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[6]  Gabor T. Herman,et al.  A topological proof of a surface tracking algorithm , 1982, Comput. Vis. Graph. Image Process..

[7]  Henry Fuchs,et al.  Optimal surface reconstruction from planar contours , 1977, CACM.

[8]  Bidyut Baran Chaudhuri,et al.  3D Digital Topology under Binary Transformation with Applications , 1996, Comput. Vis. Image Underst..

[9]  Azriel Rosenfeld,et al.  Digital surfaces , 1991, CVGIP Graph. Model. Image Process..

[10]  Azriel Rosenfeld,et al.  Adjacency in Digital Pictures , 1974, Inf. Control..

[11]  Jean-Daniel Boissonnat,et al.  Shape reconstruction from planar cross sections , 1988, Comput. Vis. Graph. Image Process..

[12]  Azriel Rosenfeld,et al.  Connectivity and genus in three dimensions , 1971 .

[13]  Reinhard Klette The m-dimensional grid point space , 1985, Comput. Vis. Graph. Image Process..

[14]  Gabor T. Herman,et al.  Discrete multidimensional Jordan surfaces , 1992, CVGIP Graph. Model. Image Process..

[15]  Jack Sklansky,et al.  Recognition of convex blobs , 1970, Pattern Recognit..

[16]  Jayaram K. Udupa Multidimensional Digital Boundaries , 1994, CVGIP Graph. Model. Image Process..

[17]  Dallas E. Webster,et al.  SURFACES OF ORGANS IN DISCRETE THREE-DIMENSIONAL SPACE , 1981 .

[18]  Ralph Kopperman,et al.  A Jordan surface theorem for three-dimensional digital spaces , 1991, Discret. Comput. Geom..

[19]  Gabor T. Herman,et al.  Mathematical Aspects of Computerized Tomography , 1981, Lecture Notes in Medical Informatics.

[20]  John Mylopoulos,et al.  On the Topological Properties of Quantized Spaces, II. Connectivity and Order of Connectivity , 1971, JACM.

[21]  John Mylopoulos,et al.  On the Topological Properties of Quantized Spaces, I. The Notion of Dimension , 1971, JACM.

[22]  Efim Khalimsky,et al.  Topological structures in computer science , 1987 .

[23]  Azriel Rosenfeld,et al.  Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..

[24]  T. Yung Kong,et al.  On Topology Preservation in 2-D and 3-D Thinning , 1995, Int. J. Pattern Recognit. Artif. Intell..

[25]  Azriel Rosenfeld,et al.  Three-Dimensional Digital Topology , 1981, Inf. Control..

[26]  Gabor T. Herman,et al.  On topology as applied to image analysis , 1990, Comput. Vis. Graph. Image Process..

[27]  Efim Khalimsky Finite, primitive and euclidean spaces , 1988 .

[28]  Jayaram K. Udupa,et al.  Applications of digital topology in medical three-dimensional imaging , 1992 .

[29]  Bidyut Baran Chaudhuri,et al.  A new approach to computing the Euler characteristic , 1995, Pattern Recognit..

[30]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[31]  Azriel Rosenfeld,et al.  Recognition of Surfaces in Three-Dimensional Digital Images , 1982, Inf. Control..

[32]  K. Voss,et al.  Images, Objects, and Surfaces in Zn , 1991, Int. J. Pattern Recognit. Artif. Intell..

[33]  Eric Keppel,et al.  Approximating Complex Surfaces by Triangulation of Contour Lines , 1975, IBM J. Res. Dev..

[34]  Bhabatosh Chanda,et al.  Topology preservation in 3D digital space , 1994, Pattern Recognit..

[35]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[36]  Bill Roscoe,et al.  Characterisations of simply−connected finite polyhedra in 3−space , 1985 .

[37]  R. Ho Algebraic Topology , 2022 .