On certain new integrable second order nonlinear differential equations and their connection with two dimensional Lotka-Volterra system
暂无分享,去创建一个
M. Lakshmanan | R. Gladwin Pradeep | V. K. Chandrasekar | M. Senthilvelan | M. Lakshmanan | M. Senthilvelan | R. G. Pradeep
[1] Jean Moulin Ollagnier,et al. Rational integration of the Lotka–Volterra system , 1999 .
[2] O. Bogoyavlensky. Integrable discretizations of the KdV equation , 1988 .
[3] V. K. Chandrasekar,et al. A simple and unified approach to identify integrable nonlinear oscillators and systems , 2005, nlin/0511030.
[4] J. Moulin-Ollagnier,et al. Polynomial first integrals of the Lotka-Volterra system , 1997 .
[5] M. Feix,et al. Families of invariants of the motion for the Lotka–Volterra equations: The linear polynomials family , 1992 .
[6] R. Iacono. Comment on ‘On the general solution for the modified Emden-type equation ’ , 2008 .
[7] V. K. Chandrasekar,et al. Nonstandard conserved Hamiltonian structures in dissipative/damped systems: Nonlinear generalizations of damped harmonic oscillator , 2009 .
[8] J. M. Ollagnier. Liouvillian integration of the Lotka-Volterra system , 2001 .
[9] J. Llibre,et al. Integrability of the 2D Lotka-Volterra system via polynomial first integrals and polynomial inverse integrating factors , 2000 .
[10] B. Dorizzi,et al. Integrability and the Painlevé property for low-dimensional systems , 1984 .
[11] M. Feix,et al. Connection between the existence of first integrals and the painlevé property in two-dimensional lotka-volterra and quadratic systems , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[12] W. Lamb. Theory of an optical maser , 1964 .
[13] G. Latta,et al. Ordinary differential equations and their solutions , 1960 .
[14] M. Feix,et al. On the Hamiltonian structure of 2D ODE possessing an invariant , 1992 .
[15] M. A. Almeida,et al. Lie symmetries and invariants of the Lotka–Volterra system , 1995 .
[16] V. K. Chandrasekar,et al. Extended Prelle-Singer Method and Integrability/Solvability of a Class of Nonlinear nth Order Ordinary Differential Equations , 2005, nlin/0501045.
[17] J. Llibre,et al. Darboux method and search of invariants for the Lotka–Volterra and complex quadratic systems , 1999 .
[18] P. Sachdev,et al. Integrability and singularity structure of predator‐prey system , 1993 .
[19] Jaume Llibre,et al. Global analytic first integrals for the real planar Lotka-Volterra system , 2007 .
[20] M. Feix,et al. Invariants for models of interacting populations , 1989 .
[21] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[22] V. K. Chandrasekar,et al. On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[23] Joseph Lipka,et al. A Table of Integrals , 2010 .
[24] Shanmuganathan Rajasekar,et al. Nonlinear dynamics : integrability, chaos, and patterns , 2003 .
[25] Jaume Llibre,et al. Liouvillian first integrals for the planar Lotka-Volterra system , 2003 .
[26] E. Kamke. Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .
[27] D. F. Hays,et al. Table of Integrals, Series, and Products , 1966 .
[28] V. K. Chandrasekar,et al. Unusual Liénard-type nonlinear oscillator. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.