On certain new integrable second order nonlinear differential equations and their connection with two dimensional Lotka-Volterra system

In this paper, we consider a second order nonlinear ordinary differential equation of the form x+k1(x2/x)+(k2+k3x)x+k4x3+k5x2+k6x=0, where ki’s, i=1,2,…,6, are arbitrary parameters. By using the modified Prelle–Singer procedure, we identify five new integrable cases in this equation besides two known integrable cases, namely (i) k2=0, k3=0 and (ii) k1=0, k2=0, k5=0. Among these five, four equations admit time-dependent first integrals and the remaining one admits time-independent first integral. From the time-independent first integral, nonstandard Hamiltonian structure is deduced, thereby proving the Liouville sense of integrability. In the case of time-dependent integrals, we either explicitly integrate the system or transform to a time-independent case and deduce the underlying Hamiltonian structure. We also demonstrate that the above second order ordinary differential equation is intimately related to the two dimensional Lotka–Volterra system. From the integrable parametric choices of the above non...

[1]  Jean Moulin Ollagnier,et al.  Rational integration of the Lotka–Volterra system , 1999 .

[2]  O. Bogoyavlensky Integrable discretizations of the KdV equation , 1988 .

[3]  V. K. Chandrasekar,et al.  A simple and unified approach to identify integrable nonlinear oscillators and systems , 2005, nlin/0511030.

[4]  J. Moulin-Ollagnier,et al.  Polynomial first integrals of the Lotka-Volterra system , 1997 .

[5]  M. Feix,et al.  Families of invariants of the motion for the Lotka–Volterra equations: The linear polynomials family , 1992 .

[6]  R. Iacono Comment on ‘On the general solution for the modified Emden-type equation ’ , 2008 .

[7]  V. K. Chandrasekar,et al.  Nonstandard conserved Hamiltonian structures in dissipative/damped systems: Nonlinear generalizations of damped harmonic oscillator , 2009 .

[8]  J. M. Ollagnier Liouvillian integration of the Lotka-Volterra system , 2001 .

[9]  J. Llibre,et al.  Integrability of the 2D Lotka-Volterra system via polynomial first integrals and polynomial inverse integrating factors , 2000 .

[10]  B. Dorizzi,et al.  Integrability and the Painlevé property for low-dimensional systems , 1984 .

[11]  M. Feix,et al.  Connection between the existence of first integrals and the painlevé property in two-dimensional lotka-volterra and quadratic systems , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  W. Lamb Theory of an optical maser , 1964 .

[13]  G. Latta,et al.  Ordinary differential equations and their solutions , 1960 .

[14]  M. Feix,et al.  On the Hamiltonian structure of 2D ODE possessing an invariant , 1992 .

[15]  M. A. Almeida,et al.  Lie symmetries and invariants of the Lotka–Volterra system , 1995 .

[16]  V. K. Chandrasekar,et al.  Extended Prelle-Singer Method and Integrability/Solvability of a Class of Nonlinear nth Order Ordinary Differential Equations , 2005, nlin/0501045.

[17]  J. Llibre,et al.  Darboux method and search of invariants for the Lotka–Volterra and complex quadratic systems , 1999 .

[18]  P. Sachdev,et al.  Integrability and singularity structure of predator‐prey system , 1993 .

[19]  Jaume Llibre,et al.  Global analytic first integrals for the real planar Lotka-Volterra system , 2007 .

[20]  M. Feix,et al.  Invariants for models of interacting populations , 1989 .

[21]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[22]  V. K. Chandrasekar,et al.  On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[24]  Shanmuganathan Rajasekar,et al.  Nonlinear dynamics : integrability, chaos, and patterns , 2003 .

[25]  Jaume Llibre,et al.  Liouvillian first integrals for the planar Lotka-Volterra system , 2003 .

[26]  E. Kamke Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .

[27]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[28]  V. K. Chandrasekar,et al.  Unusual Liénard-type nonlinear oscillator. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.