Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality

[1]  W. Kolch,et al.  BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research , 2016, Scientific Reports.

[2]  Ying-Cheng Lai,et al.  Reconstructing direct and indirect interactions in networked public goods game , 2016, Scientific Reports.

[3]  Y. Lai,et al.  Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems , 2016, 1704.08764.

[4]  Dezhong Yao,et al.  Causal Inference Based on the Analysis of Events of Relations for Non-stationary Variables , 2016, Scientific Reports.

[5]  Elias Bareinboim,et al.  Causal inference and the data-fusion problem , 2016, Proceedings of the National Academy of Sciences.

[6]  Laxmi Parida,et al.  Novel applications of multitask learning and multiple output regression to multiple genetic trait prediction , 2016, Bioinform..

[7]  Guanrong Chen,et al.  Identifying structures of continuously-varying weighted networks , 2016, Scientific Reports.

[8]  A. Barabasi,et al.  Universal resilience patterns in complex networks , 2016, Nature.

[9]  Luonan Chen,et al.  Part mutual information for quantifying direct associations in networks , 2016, Proceedings of the National Academy of Sciences.

[10]  Sahil R. Kalra,et al.  Big Challenges? Big Data … , 2015 .

[11]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[12]  Xiao Han,et al.  Robust Reconstruction of Complex Networks from Sparse Data , 2015, Physical review letters.

[13]  Guy-Bart Stan,et al.  A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems , 2014, IEEE Transactions on Automatic Control.

[14]  Zalmiyah Zakaria,et al.  A review on the computational approaches for gene regulatory network construction , 2014, Comput. Biol. Medicine.

[15]  Claire J. Tomlin,et al.  Exact reconstruction of gene regulatory networks using compressive sensing , 2014, BMC Bioinformatics.

[16]  Hassan M. Fathallah-Shaykh,et al.  Tracking of time-varying genomic regulatory networks with a LASSO-Kalman smoother , 2014, EURASIP J. Bioinform. Syst. Biol..

[17]  G. Michailidis,et al.  Autoregressive models for gene regulatory network inference: sparsity, stability and causality issues. , 2013, Mathematical biosciences.

[18]  V. Marx Biology: The big challenges of big data , 2013, Nature.

[19]  Dimitris Kugiumtzis,et al.  Direct coupling information measure from non-uniform embedding , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Julio R. Banga,et al.  Reverse Engineering Cellular Networks with Information Theoretic Methods , 2013, Cells.

[21]  A. Valencia,et al.  Emerging methods in protein co-evolution , 2013, Nature Reviews Genetics.

[22]  George Sugihara,et al.  Detecting Causality in Complex Ecosystems , 2012, Science.

[23]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[24]  Michael Mitzenmacher,et al.  Detecting Novel Associations in Large Data Sets , 2011, Science.

[25]  Robert D. Nowak,et al.  Causal Network Inference Via Group Sparse Regularization , 2011, IEEE Transactions on Signal Processing.

[26]  Matthew B. Jones,et al.  Challenges and Opportunities of Open Data in Ecology , 2011, Science.

[27]  Marc Timme,et al.  Inferring network topology from complex dynamics , 2010, 1007.1640.

[28]  Ali Shojaie,et al.  Discovering graphical Granger causality using the truncating lasso penalty , 2010, Bioinform..

[29]  Eric P. Xing,et al.  Multi-population GWA mapping via multi-task regularized regression , 2010, Bioinform..

[30]  Jianfeng Feng,et al.  Granger causality vs. dynamic Bayesian network inference: a comparative study , 2009, BMC Bioinformatics.

[31]  Naoki Abe,et al.  Grouped graphical Granger modeling for gene expression regulatory networks discovery , 2009, Bioinform..

[32]  Massimiliano Pontil,et al.  Convex multi-task feature learning , 2008, Machine Learning.

[33]  João Ricardo Sato,et al.  Modeling Nonlinear Gene Regulatory Networks from Time Series Gene Expression Data , 2008, J. Bioinform. Comput. Biol..

[34]  Daniele Marinazzo,et al.  Kernel method for nonlinear granger causality. , 2007, Physical review letters.

[35]  João Ricardo Sato,et al.  Modeling gene expression regulatory networks with the sparse vector autoregressive model , 2007, BMC Systems Biology.

[36]  Yan Liu,et al.  Temporal causal modeling with graphical granger methods , 2007, KDD '07.

[37]  Korbinian Strimmer,et al.  Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process , 2007, BMC Bioinformatics.

[38]  Adam A. Margolin,et al.  Reverse engineering cellular networks , 2006, Nature Protocols.

[39]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[40]  Daniele Marinazzo,et al.  Radial basis function approach to nonlinear Granger causality of time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[42]  Dimitris Kugiumtzis,et al.  Algorithm 1 : mBTS for Require : : The set of time series 1 : initially explanatory vector is empty 2 : : the error variance 3 : the maximum lags , 2016 .

[43]  Wang Xiaofan,et al.  Network reconstruction based on grouped sparse nonlinear graphical granger causality , 2016, 2016 35th Chinese Control Conference (CCC).

[44]  Download details: IP Address: 129.219.51.205 , 2011 .