Bulked segregant transcriptome analysis in pea identifies key expression markers for resistance to Peyronellaea pinodes

[1]  M. Castillejo,et al.  Quantitative Analysis of Target Peptides Related to Resistance Against Ascochyta Blight (Peyronellaea pinodes) in Pea. , 2020, Journal of proteome research.

[2]  Dayong Li,et al.  NAC transcription factors in plant immunity , 2019, Phytopathology Research.

[3]  Jason A. Corwin,et al.  PMR5, an acetylation protein at the intersection of pectin biosynthesis and defense against fungal pathogens. , 2019, The Plant journal : for cell and molecular biology.

[4]  Björn Rotter,et al.  Gene Expression Profiling and Fine Mapping Identifies a Gibberellin 2-Oxidase Gene Co-segregating With the Dominant Dwarfing Gene Ddw1 in Rye (Secale cereale L.) , 2019, Front. Plant Sci..

[5]  Björn Rotter,et al.  Mapping-by-sequencing using NGS-based 3′-MACE-Seq reveals a new mutant allele of the essential nodulation gene Sym33 (IPD3) in pea (Pisum sativum L.) , 2019, PeerJ.

[6]  T. Warkentin,et al.  Fine Mapping of QTLs for Ascochyta Blight Resistance in Pea Using Heterogeneous Inbred Families , 2017, Front. Plant Sci..

[7]  Björn Rotter,et al.  A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum sp.) , 2017, Front. Plant Sci..

[8]  Björn Rotter,et al.  Massive Analysis of cDNA Ends (MACE) for transcript-based marker design in pea (Pisum sativum L.) , 2016, Genomics data.

[9]  T. Warkentin,et al.  Identification of QTLs Associated with Improved Resistance to Ascochyta Blight in an Interspecific Pea Recombinant Inbred Line Population , 2016 .

[10]  Hirotaka Takahashi,et al.  The plant cell wall as a site for molecular contacts in fungal pathogenesis , 2016 .

[11]  Björn Rotter,et al.  In planta Identification of Putative Pathogenicity Factors from the Chickpea Pathogen Ascochyta rabiei by De novo Transcriptome Sequencing Using RNA-Seq and Massive Analysis of cDNA Ends , 2015, Front. Microbiol..

[12]  P. Wincker,et al.  Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. , 2015, The Plant journal : for cell and molecular biology.

[13]  A. Figueiredo,et al.  Subtilisin-like proteases in plant–pathogen recognition and immune priming: a perspective , 2014, Front. Plant Sci..

[14]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[15]  D. Rubiales,et al.  Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea , 2014, Plant Cell Reports.

[16]  Björn Rotter,et al.  Identification of Genes Involved in Resistance to Didymella pinodes in Pea by deepSuperSAGE Transcriptome Profiling , 2014, Plant Molecular Biology Reporter.

[17]  R. Terauchi,et al.  QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. , 2013, The Plant journal : for cell and molecular biology.

[18]  Jun Liu,et al.  OsLYP4 and OsLYP6 play critical roles in rice defense signal transduction , 2013, Plant signaling & behavior.

[19]  D. Rubiales,et al.  Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. , 2013, European Journal of Plant Pathology.

[20]  N. Shibuya,et al.  Functional characterization of CEBiP and CERK1 homologs in arabidopsis and rice reveals the presence of different chitin receptor systems in plants. , 2012, Plant & cell physiology.

[21]  Reduced representation sequencing of plant stress transcriptomes , 2012, Journal of Plant Biochemistry and Biotechnology.

[22]  L. Du,et al.  The function of calreticulin in plant immunity , 2012, Plant signaling & behavior.

[23]  G. Stacey,et al.  LYK4, a Lysin Motif Receptor-Like Kinase, Is Important for Chitin Signaling and Plant Innate Immunity in Arabidopsis1[C][W][OA] , 2012, Plant Physiology.

[24]  F. Krajinski,et al.  Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology , 2011, BMC Genomics.

[25]  B. Román,et al.  Evaluation of candidate reference genes for expression studies in Pisumsativum under different experimental conditions , 2010, Planta.

[26]  A. Ishikawa,et al.  AGB1 and PMR5 contribute to PEN2-mediated preinvasion resistance to Magnaporthe oryzae in Arabidopsis thaliana. , 2009, Molecular plant-microbe interactions : MPMI.

[27]  Ruiqiang Li,et al.  SOAP: short oligonucleotide alignment program , 2008, Bioinform..

[28]  J. Chory,et al.  The Arabidopsis DESPERADO/AtWBC11 Transporter Is Required for Cutin and Wax Secretion1[C][W] , 2007, Plant Physiology.

[29]  B. Tivoli,et al.  Comparison of the epidemiology of ascochyta blights on grain legumes , 2007, European Journal of Plant Pathology.

[30]  D. Rubiales,et al.  Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum , 2007, Molecular Breeding.

[31]  Masa Cemazar,et al.  Protein disulfide isomerase: the structure of oxidative folding. , 2006, Trends in biochemical sciences.

[32]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[33]  D. Rubiales,et al.  Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp , 2005 .

[34]  G. Timmerman-Vaughan,et al.  Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses , 2004, Theoretical and Applied Genetics.

[35]  A. Baranger,et al.  Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages , 2004, Theoretical and Applied Genetics.

[36]  S. Woods,et al.  Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.) , 2003, Theoretical and Applied Genetics.

[37]  H. Porta,et al.  Plant Lipoxygenases. Physiological and Molecular Features , 2002, Plant Physiology.

[38]  J. Denecke,et al.  Calreticulin and calnexin in plants , 1998 .

[39]  B. Tivoli,et al.  Spatio‐temporal development of pycnidia and perithecia and dissemination of spores of Mycosphaerella pinodes on pea (Pisum sativum) , 1996 .

[40]  B. Lewis,et al.  Expression of resistance to Mycosphaerella pinodes in Pisum sativum , 1992 .

[41]  R. Michelmore,et al.  Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[42]  E. P. Lewis In perspective. , 1972, Nursing outlook.