FREQUENCY DOMAIN RECONSTRUCTION FOR PHOTO- AND THERMOACOUSTIC TOMOGRAPHY WITH LINE DETECTORS
暂无分享,去创建一个
[1] Otmar Scherzer,et al. KACZMARZ METHODS FOR REGULARIZING NONLINEAR ILL-POSED EQUATIONS II: APPLICATIONS , 2007 .
[2] Thomas Schuster,et al. On a Regularization Scheme for Linear Operators in Distribution Spaces with an Application to the Spherical Radon Transform , 2005, SIAM J. Appl. Math..
[3] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[4] Minghua Xu,et al. Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry , 2002, IEEE Transactions on Medical Imaging.
[5] V. Palamodov. Reconstructive Integral Geometry , 2004 .
[6] Heinz Schmidt-Kloiber,et al. Light distribution measurements in absorbing materials by optical detection of laser‐induced stress waves , 1996 .
[7] Stephen J. Norton,et al. Ultrasonic Reflectivity Imaging in Three Dimensions: Exact Inverse Scattering Solutions for Plane, Cylindrical, and Spherical Apertures , 1981, IEEE Transactions on Biomedical Engineering.
[8] Barbara Kaltenbacher,et al. Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.
[9] Linh V. Nguyen,et al. Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .
[10] L. Andersson. On the determination of a function from spherical averages , 1988 .
[11] K. P. Köstli,et al. Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response. , 2003, Applied optics.
[12] M. Haltmeier,et al. Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors , 2007 .
[13] Peter Kuchment,et al. On the injectivity of the circular Radon transform , 2005 .
[14] L. Kunyansky,et al. Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.
[15] Peter Kuchment,et al. Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed , 2007, 0706.0598.
[16] Martin Frenz,et al. Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation , 2007 .
[17] Stephen J. Norton,et al. Reconstruction of a two‐dimensional reflecting medium over a circular domain: Exact solution , 1980 .
[18] Massoud Motamedi,et al. Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study. , 2002, Applied optics.
[19] Peter Kuchment,et al. Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.
[20] Wiendelt Steenbergen,et al. The Twente Photoacoustic Mammoscope: system overview and performance , 2005, Physics in medicine and biology.
[21] Minghua Xu,et al. Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries , 2003, IEEE Transactions on Biomedical Engineering.
[22] Robert A. Kruger,et al. Thermoacoustic Molecular Imaging of Small Animals , 2003 .
[23] V. Palamodov,et al. Reconstruction from limited data of arc means , 2000 .
[24] Victor Palamodov. Remarks on the general Funk-Radon transform and thermoacoustic tomography , 2007 .
[25] Leonid Kunyansky. A series solution and a fast algorithm for the inversion of the spherical mean Radon transform , 2007 .
[26] J. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .
[27] Xu Xiao. Photoacoustic imaging in biomedicine , 2008 .
[28] Robert A Kruger,et al. Thermoacoustic computed tomography using a conventional linear transducer array. , 2003, Medical physics.
[29] Peter Kuchment,et al. A Range Description for the Planar Circular Radon Transform , 2006, SIAM J. Math. Anal..
[30] P. Burgholzer,et al. Photoacoustic tomography using a fiber based Fabry-Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method , 2007, European Conference on Biomedical Optics.
[31] Trace identities for solutions of the wave equation with initial data supported in a ball , 2005 .
[32] P. Burgholzer,et al. Thermoacoustic tomography with integrating area and line detectors , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[33] Otmar Scherzer,et al. Filtered backprojection for thermoacoustic computed tomography in spherical geometry , 2005, Mathematical Methods in the Applied Sciences.
[34] A. Beltukov,et al. Operator identities relating sonar and Radon transforms in Euclidean space , 2006, math/0607437.
[35] E. T. Quinto,et al. Range descriptions for the spherical mean Radon transform. I. Functions supported in a ball , 2006, math/0606314.
[36] Edward Z. Zhang,et al. Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation , 2004 .
[37] S. Jacques,et al. Iterative reconstruction algorithm for optoacoustic imaging. , 2002, The Journal of the Acoustical Society of America.
[38] John A. Fawcett,et al. Inversion of N-dimensional spherical averages , 1985 .
[39] Mark A. Anastasio,et al. Application of inverse source concepts to photoacoustic tomography , 2007 .
[40] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[41] F. D. de Mul,et al. Three-dimensional photoacoustic imaging of blood vessels in tissue. , 1998, Optics letters.
[42] Alexander A. Oraevsky,et al. Optoacoustic tomography of breast cancer with arc-array transducer , 2000, BiOS.
[43] Lihong V. Wang,et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain , 2003, Nature Biotechnology.
[44] Paul C. Beard,et al. Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system , 2007, SPIE BiOS.
[45] William Rundell,et al. Surveys on solution methods for inverse problems , 2000 .
[46] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[47] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[48] Markus Haltmeier,et al. Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..
[49] Yuan Xu,et al. Rhesus monkey brain imaging through intact skull with thermoacoustic tomography , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[50] Roy G. M. Kolkman,et al. In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor , 2003 .
[51] R. Kruger,et al. Photoacoustic ultrasound (PAUS)--reconstruction tomography. , 1995, Medical physics.
[52] Alexander G. Ramm. Injectivity of the spherical means operator , 2002 .
[53] Yuan Xu,et al. Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry , 2002, IEEE Transactions on Medical Imaging.
[54] Otmar Scherzer,et al. Thermoacoustic computed tomography with large planar receivers , 2004 .
[55] Eric Todd Quinto,et al. Injectivity Sets for the Radon Transform over Circles and Complete Systems of Radial Functions , 1996 .
[56] Markus Haltmeier,et al. Experimental evaluation of reconstruction algorithms for limited view photoacoustic tomography with line detectors , 2007 .
[57] Lihong V. Wang,et al. Reconstructions in limited-view thermoacoustic tomography. , 2004, Medical physics.
[58] Geng Ku,et al. Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. , 2005, Optics letters.
[59] Minghua Xu,et al. Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment. , 2002, Medical physics.
[60] R. Courant,et al. Methods of Mathematical Physics , 1962 .
[61] Rakesh,et al. The spherical mean value operator with centers on a sphere , 2007 .
[62] L. Ehrenpreis. The Universality of the Radon Transform , 2003 .
[63] Jin Zhang,et al. Half-time image reconstruction in thermoacoustic tomography , 2005, IEEE Transactions on Medical Imaging.
[64] Rakesh,et al. The range of the spherical mean value operator for functions supported in a ball , 2006 .
[65] Otmar Scherzer,et al. THERMOACOUSTIC TOMOGRAPHY AND THE CIRCULAR RADON TRANSFORM: EXACT INVERSION FORMULA , 2007 .
[66] Otmar Scherzer,et al. Thermoacoustic tomography using a fiber-based Fabry-Perot interferometer as an integrating line detector , 2006, SPIE BiOS.
[67] Jin Zhang,et al. Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography , 2005, IEEE Transactions on Medical Imaging.
[68] R. Kruger,et al. Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study. , 2000, Radiology.
[69] Markus Haltmeier,et al. Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. , 2007, Applied optics.
[70] Rakesh,et al. Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..
[71] H. Weber,et al. Temporal backward projection of optoacoustic pressure transients using fourier transform methods. , 2001, Physics in medicine and biology.
[72] M. Haltmeier,et al. Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[73] Michael V. Klibanov,et al. The Quasi-Reversibility Method for Thermoacoustic Tomography in a Heterogeneous Medium , 2007, SIAM J. Sci. Comput..
[74] Markus Haltmeier,et al. Three-dimensional photoacoustic tomography using acoustic line detectors , 2007, SPIE BiOS.
[75] A. Oraevsky,et al. Detection of ultrawide-band ultrasound pulses in optoacoustic tomography , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.