On the impact of grain size distribution on the plastic behaviour of polycrystalline metals

Recent experimental studies have reported improved combinations of strength and uniform elongation in ultrafine-grained polycrystals with bi-modal grain size distributions. Despite these results, the extent to which the grain size distribution affects macroscopic tensile response, particularly at large strains, is unclear. This issue is examined here for polycrystals with varying grain sizes and grain size distributions using a grain size dependent constitutive model within the viscoplastic self-consistent formalism. The evolution of the macroscopic and grain-level stresses and strains has been monitored as a function of the width and mean of the grain size distribution. As an example of highly heterogeneous structures, the stress–strain response of a number of bi-modal microstructures have been examined and compared with their uni-modal counterparts.

[1]  J. Weertman,et al.  Micromechanics Model Concerning Yield Behavior of Nanocrystalline Materials , 2004 .

[2]  C. Pande,et al.  Yield stress of fine grained materials , 1998 .

[3]  Ricardo A. Lebensohn,et al.  A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals : application to zirconium alloys , 1993 .

[4]  E. Lavernia,et al.  Tensile behavior of bulk nanostructured and ultrafine grained aluminum alloys , 2003 .

[5]  W. Skrotzki,et al.  Scaling effects in the plasticity of nickel , 2006 .

[6]  R. Valiev Structure and mechanical properties of ultrafine-grained metals , 1997 .

[7]  Amit Acharya,et al.  Grain-size effect in viscoplastic polycrystals at moderate strains , 2000 .

[8]  P. Krysl,et al.  Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part II , 2006 .

[9]  Yinmin M Wang,et al.  Three strategies to achieve uniform tensile deformation in a nanostructured metal , 2004 .

[10]  H. Maier,et al.  MODELING THE DEFORMATION BEHAVIOR OF HADFIELD STEEL SINGLE AND POLYCRYSTALS DUE TO TWINNING AND SLIP , 2000 .

[11]  C. Koch Optimization of strength and ductility in nanocrystalline and ultrafine grained metals , 2003 .

[12]  E. Ma,et al.  Instabilities and ductility of nanocrystalline and ultrafine-grained metals , 2003 .

[13]  Ricardo A. Lebensohn,et al.  A self-consistent approach for modelling texture development of two-phase polycrystals application to titanium alloys , 1997 .

[14]  K. Kurzydłowski A model for the flow stress dependence on the distribution of grain size in polycrystals , 1990 .

[15]  C. Maurice,et al.  Hot rolling textures of f.c.c. metals—Part II. Numerical simulations , 1997 .

[16]  J. Gracio The double effect of grain size on the work hardening behaviour of polycrystalline copper , 1994 .

[17]  R. Spolenak,et al.  Converting polycrystals into single crystals - Selective grain growth by high-energy ion bombardment , 2006 .

[18]  A. Molinari,et al.  Tuning a self consistent viscoplastic model by finite element results—I. Modeling , 1994 .

[19]  R. A. Lebensohn,et al.  Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations , 2007 .

[20]  C. Schuh,et al.  Tailoring and patterning the grain size of nanocrystalline alloys , 2007 .

[21]  C. Tomé Self-consistent polycrystal models: a directional compliance criterion to describe grain interactions , 1999 .

[22]  C. Sinclair,et al.  A model for the grain size dependent work hardening of copper , 2006 .

[23]  Ricardo A. Lebensohn,et al.  Calculation of intergranular stresses based on a large-strain viscoplastic self-consistent polycrystal model , 1998 .

[24]  Subra Suresh,et al.  Nano-sized twins induce high rate sensitivity of flow stress in pure copper , 2005 .

[25]  M. Berveiller,et al.  Impact of the grain size distribution on the yield stress of heterogeneous materials , 2007 .

[26]  P. Prangnell,et al.  Effect of grain size on tensile behaviour of a submicron grained Al–3 wt-%Mg alloy produced by severe deformation , 2000 .

[27]  J. G. Sevillano,et al.  Ductilization of nanocrystalline materials for structural applications , 2004 .

[28]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[29]  D. Lloyd,et al.  Effect of a duplex grain size on the tensile ductility of an ultra-fine grained Al–Mg alloy, AA5754, produced by asymmetric rolling and annealing , 2004 .

[30]  Anthony W. Thompson,et al.  The dependence of polycrystal work hardening on grain size , 1973 .

[31]  J. Weertman,et al.  Microsample tensile testing of nanocrystalline metals , 2000 .

[32]  J. Aitchison,et al.  The Lognormal Distribution. , 1958 .

[33]  P. Kao,et al.  Transition of tensile deformation behaviors in ultrafine-grained aluminum , 2005 .

[34]  B. Han,et al.  Modeling the constitutive response of bimodal metals , 2006 .

[35]  S. Kurtz,et al.  Microstructure and normal grain growth in metals and ceramics. Part I. Theory , 1980 .

[36]  E. Lavernia,et al.  Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy , 2001 .

[37]  A. Howe Ultrafine grained steels: industrial prospects , 2000 .

[38]  H. Wenk,et al.  Texture and Anisotropy , 2004 .

[39]  U. F. Kocks,et al.  The relation between macroscopic and microscopic strain hardening in F.C.C. polycrystals , 1984 .