BAP1 links metabolic regulation of ferroptosis to tumor suppression

[1]  L. Zhuang,et al.  Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer , 2018, Cancer communications.

[2]  B. Stockwell,et al.  Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease , 2017, Cell.

[3]  Joshua M. Stuart,et al.  Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. , 2018, Cancer cell.

[4]  Junjie Chen,et al.  Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy. , 2017, Cell reports.

[5]  Wei Li,et al.  The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate , 2017, The Journal of Biological Chemistry.

[6]  S. Pastorino,et al.  BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation , 2017, Nature.

[7]  Wei Li,et al.  BAP1 inhibits the ER stress gene regulatory network and modulates metabolic stress response , 2017, Proceedings of the National Academy of Sciences.

[8]  Antonio L Amelio,et al.  Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. , 2017, Cancer cell.

[9]  B. Gan,et al.  lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1 , 2016, Cell cycle.

[10]  R. Aebersold,et al.  A High-Density Map for Navigating the Human Polycomb Complexome. , 2016, Cell reports.

[11]  Navdeep S. Chandel,et al.  Fundamentals of cancer metabolism , 2016, Science Advances.

[12]  W. Gu,et al.  Ferroptosis: A missing puzzle piece in the p53 blueprint? , 2016, Molecular & cellular oncology.

[13]  S. Dixon,et al.  Mechanisms of ferroptosis , 2016, Cellular and Molecular Life Sciences.

[14]  Li Ma,et al.  BAF180 regulates cellular senescence and hematopoietic stem cell homeostasis through p21 , 2016, Oncotarget.

[15]  B. Stockwell,et al.  Ferroptosis: Death by Lipid Peroxidation. , 2016, Trends in cell biology.

[16]  Jing Wang,et al.  lncRNA NBR2 engages a metabolic checkpoint by regulating AMPK under energy stress , 2016, Nature Cell Biology.

[17]  D. Tang,et al.  Ferroptosis: process and function , 2016, Cell Death and Differentiation.

[18]  Steven J. M. Jones,et al.  Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. , 2016, The New England journal of medicine.

[19]  C. Thompson,et al.  The Emerging Hallmarks of Cancer Metabolism. , 2016, Cell metabolism.

[20]  Minghui Gao,et al.  Glutaminolysis and Transferrin Regulate Ferroptosis. , 2015, Molecular cell.

[21]  W. Gu,et al.  Ferroptosis as a p53-mediated activity during tumour suppression , 2015, Nature.

[22]  R. Deberardinis,et al.  Metabolic pathways promoting cancer cell survival and growth , 2015, Nature Cell Biology.

[23]  Y. Machida,et al.  BRCA1-associated Protein 1 (BAP1) Deubiquitinase Antagonizes the Ubiquitin-mediated Activation of FoxK2 Target Genes* , 2014, The Journal of Biological Chemistry.

[24]  A. Walch,et al.  Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice , 2014, Nature Cell Biology.

[25]  P. Defossez,et al.  MBD5 and MBD6 interact with the human PR‐DUB complex through their methyl‐CpG‐binding domain , 2014, Proteomics.

[26]  Lorenzo Galluzzi,et al.  Metabolic control of cell death , 2014, Science.

[27]  E. Lam,et al.  The FoxO–BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress , 2014, Oncogene.

[28]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[29]  J. Carroll,et al.  The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex , 2014, Nucleic acids research.

[30]  Li Ma,et al.  FoxO transcription factors promote AKT Ser473 phosphorylation and renal tumor growth in response to pharmacologic inhibition of the PI3K-AKT pathway. , 2014, Cancer research.

[31]  Matthew E. Welsch,et al.  Regulation of Ferroptotic Cancer Cell Death by GPX4 , 2014, Cell.

[32]  T. Pawlik,et al.  Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas , 2013, Nature Genetics.

[33]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of clear cell renal cell carcinoma , 2013, Nature.

[34]  The Cancer Genome Atlas Research Network COMPREHENSIVE MOLECULAR CHARACTERIZATION OF CLEAR CELL RENAL CELL CARCINOMA , 2013, Nature.

[35]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[36]  Thomas Krausz,et al.  BAP1 and cancer , 2013, Nature Reviews Cancer.

[37]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[38]  Somasekar Seshagiri,et al.  Loss of the Tumor Suppressor BAP1 Causes Myeloid Transformation , 2012, Science.

[39]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[40]  N. Grishin,et al.  BAP1 loss defines a new class of renal cell carcinoma , 2012, Nature Genetics.

[41]  M. R. Lamprecht,et al.  Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death , 2012, Cell.

[42]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[43]  C. Croce,et al.  Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukemia , 2012, Nature Cell Biology.

[44]  M. Roizen,et al.  Hallmarks of Cancer: The Next Generation , 2012 .

[45]  C. Sander,et al.  The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma , 2011, Nature Genetics.

[46]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[47]  P. Donaldson,et al.  Focus on molecules: the cystine/glutamate exchanger (System x(c)(-)). , 2011, Experimental eye research.

[48]  Hideyo Sato,et al.  The oxidative stress-inducible cystine/glutamate antiporter, system xc−: cystine supplier and beyond , 2011, Amino Acids.

[49]  A. Bowcock,et al.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas , 2010, Science.

[50]  Gerald C. Chu,et al.  FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. , 2010, Cancer cell.

[51]  L. Chin,et al.  LKB1 regulates quiescence and metabolic homeostasis of hematopoietic stem cells , 2010, Nature.

[52]  G. Hart,et al.  The Ubiquitin Carboxyl Hydrolase BAP1 Forms a Ternary Complex with YY1 and HCF-1 and Is a Critical Regulator of Gene Expression , 2010, Molecular and Cellular Biology.

[53]  Giacomo Cavalli,et al.  The DUBle life of polycomb complexes. , 2010, Developmental cell.

[54]  M. Wilm,et al.  Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB , 2010, Nature.

[55]  J. O’Sullivan,et al.  Levels of oxidative damage and lipid peroxidation in thyroid neoplasia , 2009, Head & neck.

[56]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[57]  Anindya Dutta,et al.  The Deubiquitinating Enzyme BAP1 Regulates Cell Growth via Interaction with HCF-1* , 2009, The Journal of Biological Chemistry.

[58]  Raja Jothi,et al.  Genome-Wide uH2A Localization Analysis Highlights Bmi1-Dependent Deposition of the Mark at Repressed Genes , 2009, PLoS genetics.

[59]  Russell G. Jones,et al.  Tumor suppressors and cell metabolism: a recipe for cancer growth. , 2009, Genes & development.

[60]  V. Dixit,et al.  Association of C-Terminal Ubiquitin Hydrolase BRCA1-Associated Protein 1 with Cell Cycle Regulator Host Cell Factor 1 , 2009, Molecular and Cellular Biology.

[61]  David A. Williams,et al.  mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization , 2008, Proceedings of the National Academy of Sciences.

[62]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[63]  P. P. Di Fiore,et al.  The many faces of ubiquitinated histone H2A: insights from the DUBs , 2008, Cell Division.

[64]  Vikki M. Weake,et al.  Histone ubiquitination: triggering gene activity. , 2008, Molecular cell.

[65]  Bing Li,et al.  The Role of Chromatin during Transcription , 2007, Cell.

[66]  J. Guan,et al.  Association of Focal Adhesion Kinase with Tuberous Sclerosis Complex 2 in the Regulation of S6 Kinase Activation and Cell Growth* , 2006, Journal of Biological Chemistry.

[67]  J. Guan,et al.  Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC–mTOR signaling pathways , 2006, The Journal of cell biology.

[68]  K. Guan,et al.  Identification of FIP200 interaction with the TSC1–TSC2 complex and its role in regulation of cell size control , 2005, The Journal of cell biology.

[69]  M. Vidal,et al.  Role of histone H2A ubiquitination in Polycomb silencing , 2004, Nature.

[70]  Ali Shilatifard,et al.  Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. , 2003, Genes & development.

[71]  P. Krammer,et al.  Tumor Immunology , 2018, Medical Immunology.

[72]  D. Green,et al.  A Matter of Life and Death , 2008, Science.