Random Forest Classification-Based Video Event Detection Utilizing Hand Crafted Features

[1]  Mubarak Shah,et al.  High-level event recognition in unconstrained videos , 2013, International Journal of Multimedia Information Retrieval.

[2]  Min Chen,et al.  Video Semantic Event/Concept Detection Using a Subspace-Based Multimedia Data Mining Framework , 2008, IEEE Transactions on Multimedia.

[3]  A. Srinivasan,et al.  Abnormal Event Detection in Crowded Video Scenes , 2014, FICTA.

[4]  A. G. Amitha Perera,et al.  Multimedia event detection with multimodal feature fusion and temporal concept localization , 2013, Machine Vision and Applications.

[5]  Mei-Ling Shyu,et al.  Weighted Association Rule Mining for Video Semantic Detection , 2010, Int. J. Multim. Data Eng. Manag..

[6]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[7]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[8]  Tong Liu,et al.  A fast recognition algorithm for suspicious behavior in high definition videos , 2015, Multimedia Systems.

[9]  Xiangjian He,et al.  A new method for violence detection in surveillance scenes , 2015, Multimedia Tools and Applications.

[10]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[11]  Frank Hopfgartner,et al.  Detecting complex events in user-generated video using concept classifiers , 2012, 2012 10th International Workshop on Content-Based Multimedia Indexing (CBMI).

[12]  Anne Humeau-Heurtier,et al.  Texture Feature Extraction Methods: A Survey , 2019, IEEE Access.

[13]  Santanu Chaudhury,et al.  A Novel Learning-Based Framework for Detecting Interesting Events in Soccer Videos , 2008, 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing.