Interacting quantum observables: categorical algebra and diagrammatics

This paper has two tightly intertwined aims: (i) to introduce an intuitive and universal graphical calculus for multi-qubit systems, the ZX-calculus, which greatly simplifies derivations in the area of quantum computation and information. (ii) To axiomatize complementarity of quantum observables within a general framework for physical theories in terms of dagger symmetric monoidal categories. We also axiomatize phase shifts within this framework. Using the well-studied canonical correspondence between graphical calculi and dagger symmetric monoidal categories, our results provide a purely graphical formalisation of complementarity for quantum observables. Each individual observable, represented by a commutative special dagger Frobenius algebra, gives rise to an Abelian group of phase shifts, which we call the phase group. We also identify a strong form of complementarity, satisfied by the Z- and X-spin observables, which yields a scaled variant of a bialgebra.

[1]  M. Rédei Why John von Neumann did not Like the Hilbert Space formalism of quantum mechanics (and what he liked instead) , 1996 .

[2]  Elham Kashefi,et al.  The measurement calculus , 2004, JACM.

[3]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Simon Perdrix,et al.  Rewriting Measurement-Based Quantum Computations with Generalised Flow , 2010, ICALP.

[5]  Prakash Panangaden,et al.  Classifying all mutually unbiased bases in Rel , 2009, 0909.4453.

[6]  Bill Edwards,et al.  Toy quantum categories , 2008, 0808.1037.

[7]  Ross Street Quantum groups: a path to current algebra , 2007 .

[8]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[9]  F. Verstraete,et al.  Valence-bond states for quantum computation , 2003, quant-ph/0311130.

[10]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[11]  William Edwards PHASE GROUPS AND LOCAL HIDDEN VARIABLES , 2010 .

[12]  Simon Perdrix STATE TRANSFER INSTEAD OF TELEPORTATION IN MEASUREMENT-BASED QUANTUM COMPUTATION , 2005 .

[13]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[14]  David N. Yetter,et al.  Braided Compact Closed Categories with Applications to Low Dimensional Topology , 1989 .

[15]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  Benni Reznik,et al.  DECOHERENCE AND ITS IMPLICATIONS IN QUANTUM COMPUTATION AND INFORMATION TRANSFER , 2001 .

[17]  Lucas Dixon,et al.  Graphical reasoning in compact closed categories for quantum computation , 2009, Annals of Mathematics and Artificial Intelligence.

[18]  Bob Coecke,et al.  Axiomatic Description of Mixed States From Selinger's CPM-construction , 2008, QPL.

[19]  Ross Duncan,et al.  Types for quantum computing , 2006 .

[20]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[21]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[22]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[23]  B. Coecke,et al.  Operational Quantum Logic: An Overview , 2000, quant-ph/0008019.

[24]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[25]  G. Ludwig An axiomatic basis for quantum mechanics , 1985 .

[26]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[27]  Aleks Kissinger,et al.  The Compositional Structure of Multipartite Quantum Entanglement , 2010, ICALP.

[28]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[29]  I. Pitowsky Quantum Probability ― Quantum Logic , 1989 .

[30]  Bob Coecke,et al.  De-linearizing Linearity: Projective Quantum Axiomatics From Strong Compact Closure , 2005, QPL.

[31]  P. Selinger Autonomous Categories in Which a ∼ = a * (extended Abstract) , 2022 .

[32]  John C. Baez,et al.  Physics, Topology, Logic and Computation: A Rosetta Stone , 2009, 0903.0340.

[33]  Garrett Birkhoff Von Neumann and lattice theory , 1958 .

[34]  D. Gross,et al.  Novel schemes for measurement-based quantum computation. , 2006, Physical review letters.

[35]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[36]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[37]  Pierre Cartier,et al.  A Primer of Hopf Algebras , 2007 .

[38]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[39]  Bob Coecke,et al.  POVMs and Naimark's Theorem Without Sums , 2006, QPL.

[40]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[41]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[42]  William Edwards The Group Theoretic Origin of Non−Locality For Qubits , 2009 .

[43]  Simon Perdrix,et al.  Graph States and the Necessity of Euler Decomposition , 2009, CiE.

[44]  B. Coecke Introducing categories to the practicing physicist , 2008, 0808.1032.

[45]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[46]  Andrew Pressley,et al.  QUANTUM GROUPS (Graduate Texts in Mathematics 155) , 1997 .

[47]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[48]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[49]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[50]  Samson Abramsky,et al.  Abstract Physical Traces , 2009, ArXiv.

[51]  Wojciech Tadej,et al.  A Concise Guide to Complex Hadamard Matrices , 2006, Open Syst. Inf. Dyn..

[52]  Tobias Nipkow,et al.  Term rewriting and all that , 1998 .

[53]  Christopher A. Fuchs,et al.  Quantum Foundations in the Light of Quantum Information , 2001 .

[54]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[55]  Samson Abramsky,et al.  Introduction to Categories and Categorical Logic , 2011, ArXiv.

[56]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[57]  G. M. Kelly,et al.  Coherence in closed categories , 1971 .

[58]  N. Mermin Quantum mysteries revisited , 1990 .

[59]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[60]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[61]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[62]  Simon Perdrix,et al.  Bases in Diagrammatic Quantum Protocols , 2008, MFPS.

[63]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[64]  Bill Edwards,et al.  Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.

[65]  D. Dieks Communication by EPR devices , 1982 .

[66]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[67]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[68]  Joachim Kock Frobenius Algebras and 2D Topological Quantum Field Theories: Frobenius algebras , 2003 .

[69]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[70]  S. Lane Categories for the Working Mathematician , 1971 .

[71]  R. Jozsa An introduction to measurement based quantum computation , 2005, quant-ph/0508124.

[72]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[73]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[74]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[75]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[76]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Graph Transformation (Monographs in Theoretical Computer Science. An EATCS Series) , 1992 .

[77]  R. Haag,et al.  Local quantum physics , 1992 .

[78]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[79]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[80]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[81]  Matthias Christandl,et al.  Quantum Information Processing: From Theory to Experiment , 2006 .

[82]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Graph Transformation , 2006, Monographs in Theoretical Computer Science. An EATCS Series.

[83]  A. Vogt An Axiomatic Basis for Quantum Mechanics: Vol. 1, Derivation of Hilbert Space Structure (Günther Ludwig) , 1987 .