Boundary control of parabolic systems: Finite-element approximation

Finite-element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates inL2[OT; L2(Ω)] andL2[OT; L2(Γ)] norms are derived for optimal state and optimal control, respectively. It turns out that these estimates areoptimal with respect to the approximation theoretic properties.

[1]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[2]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[3]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[4]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[5]  Daisuke Fujiwara,et al.  Concrete Characterization of the Domains of Fractional Powers of Some Elliptic Differential Operators of the Second Order , 1967 .

[6]  R. D. Rupp Quadratic multiplier method convergence , 1976 .

[7]  K. Malanowski,et al.  On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic equations , 1978 .

[8]  Luciano de Simon Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine , 1964 .

[9]  Miloš Zlámal,et al.  The finite element method in domains with curved boundaries , 1973 .

[10]  J. Aubin Approximation of Elliptic Boundary-Value Problems , 1980 .

[11]  Semidiscrete Least-Squares Methods for Second Order Parabolic Problems With Nonhomogenous Data , 1974 .

[12]  Miloš Zlámal Finite Element Methods for Parabolic Equations , 1974 .

[13]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[14]  R. Winther Error estimates for a galerkin approximation of a parabolic control problem , 1978 .

[15]  A. Balakrishnan Applied Functional Analysis , 1976 .

[16]  W. E. Bosarge,et al.  The Ritz-Galerkin procedure for parabolic control problems , 1973 .

[17]  S. Krein,et al.  Linear Differential Equations in Banach Space , 1972 .

[18]  J. Douglas,et al.  Galerkin Methods for Parabolic Equations , 1970 .

[19]  I. Lasiecka Boundary control of parabolic systems: Regularity of optimal solutions , 1977 .

[20]  A. Aziz The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .

[21]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[22]  I. Lasiecka Unified theory for abstract parabolic boundary problems—a semigroup approach , 1980 .

[23]  S. Kurcyusz On the existence and nonexistence of Lagrange multipliers in Banach spaces , 1976 .

[24]  Tosio Kato Perturbation theory for linear operators , 1966 .