Oversampling generates super-wavelets
暂无分享,去创建一个
[1] P. Jorgensen. An optimal spectral estimator for multi-dimensional time series with an infinite number of sample points , 1983 .
[2] A. Cohen. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .
[3] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[4] Richard S. Laugesen,et al. Translational averaging for completeness, characterization and oversampling of wavelets , 2002 .
[5] Zuowei Shen. Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .
[6] A. Ron,et al. Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .
[7] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[8] Akram Aldroubi,et al. Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..
[9] Brody Dylan Johnson,et al. On the Oversampling of Affine Wavelet Frames , 2003, SIAM J. Math. Anal..
[10] C. Chui,et al. Characterization of General Tight Wavelet Frames with Matrix Dilations and Tightness Preserving Oversampling , 2002 .
[11] Charles K. Chui,et al. N oversampling preserves any tight a ne frame for odd n , 1994 .
[12] Dorin Ervin Dutkay. The local trace function for super-wavelets , 2005 .
[13] Charles K. Chui,et al. oversampling preserves any tight affine frame for odd , 1994 .