Mathematical and computational approaches to music: challenges in an interdisciplinary enterprise

This Special Issue is dedicated to explicate and discuss methodological issues in the interdisciplinary research field of mathematical and computational approaches to music. It arose from a lively panel discussion at the third International Conference on Mathematics and Computation in Music 2011 in Paris. We have organized this panel in order to initiate the much needed interdisciplinary dialogue on the How, Why, and What of our modelling of and theorizing about music in the wide field of science, humanities and cognitive approaches to music research. From the contributions of the three panelists to this Special Issue, we extract key topics that the interdisciplinary scientific community needs to address in order to enable the different disciplines to productively complement one another in achieving a comprehensive approach to music as a complex, yet fundamental human trait.

[1]  Frans Wiering,et al.  Unfolding the potential of computational musicology , 2011, ICISO 2011.

[2]  Alan Marsden 'What was the question?': music analysis and the computer. , 2009 .

[3]  Tim Crawford,et al.  Modern methods for musicology : prospects, proposals, and realities , 2009 .

[4]  Alicja Wieczorkowska,et al.  Music Information Retrieval , 2009, Encyclopedia of Data Warehousing and Mining.

[5]  Leonhard Euler Tentamen novae theoriae musicae , 1968 .

[6]  K. Popper Objective Knowledge: An Evolutionary Approach , 1972 .

[7]  R. Derlet Welcome , 2000, The California journal of emergency medicine.

[8]  G. Widmer,et al.  chapter 7 on the use of computational methods for expressive music Performance , 2009 .

[9]  Hermann von Helmholtz,et al.  On the Sensations of Tone , 1954 .

[10]  Aline Honingh,et al.  Mathematische muziektheorie: Nieuwe mogelijkheden voor muziekgerelateerd onderzoek , 2009 .

[11]  H. Honing On the Growing Role of Observation, Formalization and Experimental Method in Musicology , 2006 .

[12]  John Morehen,et al.  Computer Applications in Musicology , 1979 .

[13]  I. Xenakis,et al.  Formalized Music: Thought and Mathematics in Composition , 1971 .

[14]  Dan Tidhar,et al.  The Temperament Police: The Truth, the Ground Truth, and Nothing but the Truth , 2011, ISMIR.

[15]  Guerino Mazzola,et al.  The Topos of Music: Geometric Logic of Concepts, Theory, and Performance , 2002 .

[16]  H. C. Longuet-Higgins,et al.  The Rhythmic Interpretation of Monophonic Music , 1984 .

[17]  Remco C. Veltkamp,et al.  MUSICAL MODELS FOR FOLK-SONG MELODY ALIGNMENT , 2009 .

[18]  Shlomo Dubnov,et al.  The topos of music: geometric logic of concepts, theory, and performance , 2005 .

[19]  R. Swinburne OBJECTIVE KNOWLEDGE: AN EVOLUTIONARY APPROACH , 1973 .

[20]  Chantal Buteau,et al.  Mathematical and computational modelling within a music analysis framework: motivic topologies as a case study , 2012 .

[21]  Chantal Buteau,et al.  Can computational music analysis be both musical and computational? , 2010 .

[22]  A. Forte The Structure of Atonal Music , 1973 .

[23]  Guerino Mazzola,et al.  Mathematical Music Theory|Status Quo 2000 , 2001 .

[24]  Michiel Schuijer,et al.  Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts , 2008 .

[25]  Zoltán Juhász,et al.  A systematic comparison of different European folk music traditions using self-organizing maps , 2006 .

[26]  Norman Carey,et al.  Aspects of Well-Formed Scales , 1989 .

[27]  Ernst Terhardt,et al.  The Concept of Musical Consonance: A Link between Music and Psychoacoustics , 1984 .

[28]  Jack Douthett,et al.  Maximally Even Sets , 1991 .

[29]  Thomas Noll Morphologische Grundlagen der abendländischen Harmonik , 1997 .

[30]  J. Webster,et al.  Musical Form, Forms & Formenlehre: Three Methodological Reflections , 2009 .

[31]  Geraint A. Wiggins Models of musical similarity , 2007 .

[32]  D. Huron,et al.  The New Empiricism : Systematic Musicology in a Postmodern Age , 2009 .

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  R. Krantz,et al.  Algorithmic and computational approaches to pure-tone approximations of equal-tempered musical scales , 2011 .

[35]  A. Kameoka,et al.  Consonance theory part II: consonance of complex tones and its calculation method. , 1969, The Journal of the Acoustical Society of America.

[36]  David Lewin,et al.  Generalized Musical Intervals and Transformations , 1987 .

[37]  Guerino Mazzola,et al.  Musical Creativity - Strategies and Tools in Composition and Improvisation , 2011, Computational Music Science.