Comparison of GA and PSO performance in parameter estimation of microbial growth models: A case-study using experimental data

This work examined the performance of a genetic algorithm (GA) and particle swarm optimization (PSO) in parameter estimation for a yeast growth kinetic model. Fitting the model's predictions simultaneously to three replicates of the same experiment, we used the variability among replicates as a criterion to evaluate the optimization result, since it reflects the biological variability characteristic of these systems. The performance of each algorithm was studied using 12 distinct tuning settings: a) in the GA, the tuning addressed different combinations of crossover fraction, and crossover and mutation functions; b) in the PSO, three different convergence behavior types (convergent with and without oscillations and divergent) were tested and the local and global weights were varied. The best objective function values were obtained when the PSO had convergent oscillatory behavior and a local acceleration larger than the global acceleration.

[1]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[2]  Elmer Ccopa Rivera,et al.  Evaluation of optimization techniques for parameter estimation: Application to ethanol fermentation considering the effect of temperature , 2006 .

[3]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[4]  D. Calçada Modeling of the Physiology of D . hansenii using Population-Based Search Methods for Parameter Estimation , 2009 .

[5]  Graeme Puxty,et al.  Application of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanisms , 2004 .

[6]  Andreas Zell,et al.  Modeling metabolic networks in C . glutamicum : a comparison of rate laws in combination with various parameter optimization strategies , 2009 .

[7]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[8]  Birgit Kamm,et al.  Biorefineries – Industrial Processes and Products , 2005 .

[9]  Miguel Rocha,et al.  A Comparison of Algorithms for the Optimization of Fermentation Processes , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[10]  Ioannis G. Tsoulos,et al.  Modifications of real code genetic algorithm for global optimization , 2008, Appl. Math. Comput..

[11]  Eugénio C. Ferreira,et al.  Yield and kinetic parameters estimation and model reduction in a recombinant E. coli fermentation , 2004 .

[12]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[13]  Francisco M. Gírio,et al.  Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii , 2000 .

[14]  Douglas B. Kell,et al.  GMP — good modelling practice: an essential component of good manufacturing practice , 1995 .

[15]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[16]  R. Hinterding,et al.  Gaussian mutation and self-adaption for numeric genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[17]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[18]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[19]  Chukwudi Anyakoha,et al.  A review of particle swarm optimization. Part I: background and development , 2007, Natural Computing.

[20]  Toshihide Ibaraki,et al.  On metaheuristic algorithms for combinatorial optimization problems , 2001, Syst. Comput. Jpn..

[21]  L. Darrell Whitley,et al.  An overview of evolutionary algorithms: practical issues and common pitfalls , 2001, Inf. Softw. Technol..

[22]  Hauke Harms,et al.  Debaryomyces hansenii — an extremophilic yeast with biotechnological potential , 2006, Yeast.

[23]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[24]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[25]  Florbela Carvalheiro,et al.  The combined effects of acetic acid, formic acid, and hydroquinone on Debaryomyces hansenii physiology. , 2006, Applied biochemistry and biotechnology.

[26]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[27]  Francisco Herrera,et al.  Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis , 1998, Artificial Intelligence Review.

[28]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[29]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[30]  T. Egli,et al.  Growth Kinetics of Suspended Microbial Cells: From Single-Substrate-Controlled Growth to Mixed-Substrate Kinetics , 1998, Microbiology and Molecular Biology Reviews.

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Aparecido Nivaldo Módenes,et al.  Study of the bioaccumulation kinetic of lead by living aquatic macrophyte Salvinia auriculata , 2009 .

[33]  Brian Birge,et al.  PSOt - a particle swarm optimization toolbox for use with Matlab , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[34]  Ramin Bozorgmehry Boozarjomehry,et al.  Which method is better for the kinetic modeling: Decimal encoded or Binary Genetic Algorithm? , 2007 .

[35]  Worthy N. Martin,et al.  Foundations of Genetic Algorithms 6 (Foga-6) , 2001 .

[36]  Toshihide Ibaraki,et al.  On metaheuristic algorithms for combinatorial optimization problems , 2001, Systems and Computers in Japan.

[37]  Peter M. Heffernan New Measures of Spread and a Simpler Formula for the Normal Distribution , 1988 .

[38]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[39]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[40]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).