A summary of the fatigue properties of wind turbine materials

Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

[1]  Theodore J. Reinhart,et al.  Engineered materials handbook , 1987 .

[2]  R. Brook,et al.  Cumulative Damage in Fatigue: A Step towards Its Understanding , 1969 .

[3]  Modayur Shrinivas Three dimensional finite element analysis of matrix cracks in multidirectional composite laminates , 1993 .

[4]  N. D. Kelley A comparison of measured wind park load histories with the WISPER and WISPERX load spectra , 1995 .

[5]  David A. Spera,et al.  Structural properties of laminated Douglas fir/epoxy composite material , 1990 .

[6]  A. A. Ten Have,et al.  WISPER and WISPERX: A summary paper describing their backgrounds, derivation and statistics , 1992 .

[7]  Douglas S. Cairns,et al.  EFFECTS OF STRUCTURAL DETAILS ON DELAMINATION AND FATIGUE LIFE OF FIBERGLASS LAMINATES , 1998 .

[8]  Agma Information Sheet AMERICAN GEAR MANUFACTURERS ASSOCIATION Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur, Helical and Herringbone Gear Teeth , 1999 .

[9]  Herbert J. Sutherland,et al.  The Development of Confidence Limits for Fatigue Strength Data , 1999 .

[10]  Joseph Jung,et al.  Stress-Wave Grading Techniques on Veneer Sheets. , 1979 .

[11]  Howard E. Boyer,et al.  Atlas of Fatigue Curves , 1986 .

[12]  H. O. Fuchs,et al.  Metal fatigue in engineering , 2001 .

[13]  H. Saunders,et al.  Book Reviews : Fracture and Fatigue Control in Structures - Application of Fracture Mechanics: S.T. Rolfe and J.M. Barsom Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977 , 1979 .

[14]  J. Mandell,et al.  Chapter 7 - Fatigue Behavior of Short Fiber Composite Materials , 1991 .

[15]  John F. Mandell,et al.  Design considerations for ply drops in composite wind turbine blades , 1997 .

[16]  Herbert J. Sutherland,et al.  Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind Turbine Blades , 1999 .

[17]  J. J. D. van Dam,et al.  Strategies for Refining IEC 61400-2: Wind Turbine Generator Systems - Part 2: Safety of Small Wind Turbines: Preprint , 2001 .

[18]  R. Peterson,et al.  Stress Concentration Factors , 1974 .

[19]  A. Salvetti Fatigue design: (Second edition) C. C. Osgood Pergamon Press (1982) pp ix + 606 £22.50 (£9.50 soft cover) , 1984 .

[20]  John F. Mandell,et al.  Fatigue of fiberglass beam substructures , 1995 .

[21]  J. Avyle,et al.  Fatigue crack growth from narrow-band Gaussian spectrum loading in 6063 aluminum alloy , 1992 .

[22]  James C. Newman,et al.  Fatigue-Crack-Growth Computer Program , 1991 .

[23]  S. Roy Swanson,et al.  Handbook of fatigue testing , 1974 .

[24]  Howard E. Boyer,et al.  Atlas of stress-strain curves , 1987 .

[25]  Douglas S. Cairns,et al.  Fracture of Skin/Stiffener Intersections in Composite Wind Turbine Structures , 1998 .

[26]  David W. Hoeppner Fatigue Testing of Weldments , 1978 .

[27]  Herbert J. Sutherland,et al.  On the Fatigue Analysis of Wind Turbines , 1999 .

[28]  Douglas S. Cairns,et al.  Selection of reinforcing fabrics for wind turbine blades , 1999 .

[29]  H. J. Sutherland,et al.  Crack propagation analysis of WECS (wind energy conversion system) components using the LIFE2 computer code , 1988 .