Enumeration of Minimal Dominating Sets and Variants

In this paper, we are interested in the enumeration of minimal dominating sets in graphs. A polynomial delay algorithm with polynomial space in split graphs is presented. We then introduce a notion of maximal extension (a set of edges added to the graph) that keeps invariant the set of minimal dominating sets, and show that graphs with extensions as split graphs are exactly the ones having chordal graphs as extensions. We finish by relating the enumeration of some variants of dominating sets to the enumeration of minimal transversals in hypergraphs.

[1]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[2]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[3]  Tomasz Imielinski,et al.  Database Mining: A Performance Perspective , 1993, IEEE Trans. Knowl. Data Eng..

[4]  Georg Gottlob,et al.  Hypertree width and related hypergraph invariants , 2007, Eur. J. Comb..

[5]  Lhouari Nourine,et al.  Enumeration aspects of maximal cliques and bicliques , 2009, Discret. Appl. Math..

[6]  Leonid Khachiyan,et al.  On the Complexity of Dualization of Monotone Disjunctive Normal Forms , 1996, J. Algorithms.

[7]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[8]  Vladimir Gurvich,et al.  An efficient implementation of a quasi-polynomial algorithm for generating hypergraph transversals and its application in joint generation , 2006, Discret. Appl. Math..

[9]  Fabrizio Grandoni,et al.  Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications , 2008, TALG.

[10]  Georg Gottlob,et al.  New Results on Monotone Dualization and Generating Hypergraph Transversals , 2003, SIAM J. Comput..

[11]  Tom A. B. Snijders,et al.  Social Network Analysis , 2011, International Encyclopedia of Statistical Science.

[12]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[13]  Jie Wu,et al.  A Dominating-Set-Based Routing Scheme in Ad Hoc Wireless Networks , 2001, Telecommun. Syst..

[14]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[15]  P. Hammer,et al.  Dual subimplicants of positive Boolean functions , 1998 .

[16]  John Scott What is social network analysis , 2010 .

[17]  Anders Yeo,et al.  Total domination of graphs and small transversals of hypergraphs , 2007, Comb..

[18]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[19]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[20]  Georg Gottlob,et al.  Identifying the Minimal Transversals of a Hypergraph and Related Problems , 1995, SIAM J. Comput..

[21]  Frank Harary,et al.  Graph Theory , 2016 .

[22]  Georg Gottlob,et al.  New results on monotone dualization and generating hypergraph transversals , 2002, STOC '02.

[23]  Bruno Courcelle,et al.  Linear delay enumeration and monadic second-order logic , 2009, Discret. Appl. Math..

[24]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[25]  Georg Gottlob,et al.  Hypergraph Transversal Computation and Related Problems in Logic and AI , 2002, JELIA.

[26]  Georg Gottlob,et al.  Computational aspects of monotone dualization: A brief survey , 2008, Discret. Appl. Math..

[27]  GélyAlain,et al.  Enumeration aspects of maximal cliques and bicliques , 2009 .