Solving the Structure and Dynamics of Metal Nanoparticles by Combining X-Ray Absorption Fine Structure Spectroscopy and Atomistic Structure Simulations.

Extended X-ray absorption fine structure (EXAFS) spectroscopy is a premiere method for analysis of the structure and structural transformation of nanoparticles. Extraction of analytical information about the three-dimensional structure and dynamics of metal-metal bonds from EXAFS spectra requires special care due to their markedly non-bulk-like character. In recent decades, significant progress has been made in the first-principles modeling of structure and properties of nanoparticles. In this review, we summarize new approaches for EXAFS data analysis that incorporate particle structure modeling into the process of structural refinement.

[1]  Joanna Aizenberg,et al.  Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning. , 2018, Nano letters.

[2]  G. Henkelman,et al.  Structural characterization of heterogeneous RhAu nanoparticles from a microwave-assisted synthesis. , 2018, Nanoscale.

[3]  Juris Purans,et al.  Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy. , 2018, Physical review letters.

[4]  Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized Using a Direct Electrochemical Method. , 2018, Journal of the American Chemical Society.

[5]  R. Ferrando,et al.  Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters , 2018, Nature Communications.

[6]  A. Trapananti,et al.  Structure and atomic correlations in molecular systems probed by XAS reverse Monte Carlo refinement , 2018 .

[7]  Tormod Næs,et al.  Data Analysis in Practice , 2018 .

[8]  G. Aquilanti,et al.  Whole-nanoparticle atomistic modeling of the schwertmannite structure from total scattering data , 2017 .

[9]  V. Petkov,et al.  Ensemble averaged structure-function relationship for nanocrystals: effective superparamagnetic Fe clusters with catalytically active Pt skin. , 2017, Nanoscale.

[10]  M. Dupuis,et al.  Amorphous Cobalt Oxide Nanoparticles as Active Water‐Oxidation Catalysts , 2017 .

[11]  R. Crooks,et al.  Structural Characterization of Rh and RhAu Dendrimer-Encapsulated Nanoparticles. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[12]  D. Lu,et al.  Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles. , 2017, The journal of physical chemistry letters.

[13]  Tomoya Uruga,et al.  Disappearance of the Superionic Phase Transition in Sub-5 nm Silver Iodide Nanoparticles. , 2017, Nano letters.

[14]  S. Woodley,et al.  Development of interatomic potentials for supported nanoparticles: the Cu/ZnO case , 2017 .

[15]  R. Nuzzo,et al.  Anomalous Structural Disorder in Supported Pt Nanoparticles. , 2017, The journal of physical chemistry letters.

[16]  G. Henkelman,et al.  Computationally Assisted STEM and EXAFS Characterization of Tunable Rh/Au and Rh/Ag Bimetallic Nanoparticle Catalysts , 2017, Microscopy and Microanalysis.

[17]  J. Timoshenko,et al.  Thermal disorder and correlation effects in anti-perovskite-type copper nitride , 2017 .

[18]  Jong-Woo Kim,et al.  Surface Atomic Structure and Functionality of Metallic Nanoparticles: A Case Study of Au–Pd Nanoalloy Catalysts , 2017 .

[19]  J. Bokhoven,et al.  In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD , 2017 .

[20]  A. Frenkel,et al.  Determination of bimetallic architectures in nanometer-scale catalysts by combining molecular dynamics simulations with x-ray absorption spectroscopy. , 2017, The Journal of chemical physics.

[21]  A. Frenkel,et al.  Probing structural relaxation in nanosized catalysts by combining EXAFS and reverse Monte Carlo methods , 2017 .

[22]  I. Pethes,et al.  Reverse Monte Carlo modeling of liquid water with the explicit use of the SPC/E interatomic potential. , 2017, The Journal of chemical physics.

[23]  Microstructural properties and local atomic structures of cobalt oxide nanoparticles synthesised by mechanical ball-milling process , 2016 .

[24]  Zak E. Hughes,et al.  Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials. , 2016, ACS nano.

[25]  Janis Timoshenko,et al.  Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure. , 2016, Physical chemistry chemical physics : PCCP.

[26]  J. Moore,et al.  Molecular Dynamics Simulations of Supported Pt Nanoparticles with a Hybrid Sutton–Chen Potential , 2016 .

[27]  L. Avakyan,et al.  Construction of three-dimensional models of bimetallic nanoparticles based on X-ray absorption spectroscopy data , 2016 .

[28]  J. Timoshenko,et al.  Temperature-dependent EXAFS study of the local structure and lattice dynamics in cubic Y₂O₃. , 2016, Journal of synchrotron radiation.

[29]  Marc R. Knecht,et al.  Identifying the Atomic-Level Effects of Metal Composition on the Structure and Catalytic Activity of Peptide-Templated Materials. , 2015, ACS nano.

[30]  B. Wiley,et al.  On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments. , 2015, Nanoscale.

[31]  G. Henkelman,et al.  Effect of annealing in oxygen on alloy structures of Pd-Au bimetallic model catalysts. , 2015, Physical chemistry chemical physics : PCCP.

[32]  M. Winterer,et al.  Localization of Ag dopant atoms in CdSe nanocrystals by reverse Monte Carlo analysis of EXAFS spectra , 2015 .

[33]  R. Tappero,et al.  Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes , 2015, Nature Communications.

[34]  Tundong Liu,et al.  Structural studies of Au–Pd bimetallic nanoparticles by a genetic algorithm method , 2015 .

[35]  G. Henkelman,et al.  A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity. , 2015, Accounts of chemical research.

[36]  G. Henkelman,et al.  Probing the Limits of Conventional Extended X-ray Absorption Fine Structure Analysis Using Thiolated Gold Nanoparticles. , 2015, ACS nano.

[37]  J. Timoshenko,et al.  Local structure of nanosized tungstates revealed by evolutionary algorithm , 2015 .

[38]  Olivier Proux,et al.  Monitoring morphology and hydrogen coverage of nanometric Pt/γ-Al2 O3 particles by in situ HERFD-XANES and quantum simulations. , 2014, Angewandte Chemie.

[39]  Alexei Kuzmin,et al.  EXAFS and XANES analysis of oxides at the nanoscale , 2014, IUCrJ.

[40]  Yang Ren,et al.  Solving the nanostructure problem: exemplified on metallic alloy nanoparticles. , 2014, Nanoscale.

[41]  B. Liu,et al.  Adsorbate-induced structural changes in 1-3 nm platinum nanoparticles. , 2014, Journal of the American Chemical Society.

[42]  J. Rehr,et al.  Dynamic structural disorder in supported nanoscale catalysts. , 2014, The Journal of chemical physics.

[43]  C. Lamberti,et al.  Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study , 2014 .

[44]  J. Timoshenko,et al.  EXAFS study of hydrogen intercalation into ReO 3 using the evolutionary algorithm , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  V. Petkov,et al.  Reverse Monte Carlo study of spherical sample under non-periodic boundary conditions: the structure of Ru nanoparticles based on x-ray diffraction data , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[46]  G. Henkelman,et al.  An experimental and theoretical investigation of the inversion of pd@pt core@shell dendrimer-encapsulated nanoparticles. , 2013, ACS nano.

[47]  F. Behafarid,et al.  Towards the Understanding of Sintering Phenomena at the Nanoscale: Geometric and Environmental Effects , 2013, Topics in Catalysis.

[48]  R. Gordon,et al.  Predicting XAFS scattering path cumulants and XAFS spectra for metals (Cu, Ni, Fe, Ti, Au) using molecular dynamics simulations. , 2013, Journal of synchrotron radiation.

[49]  J. Rehr,et al.  Operando Effects on the Structure and Dynamics of PtnSnm/γ-Al2O3 from Ab Initio Molecular Dynamics and X-ray Absorption Spectra , 2013 .

[50]  C. Giordano,et al.  Structure-Properties Correlation in Si Nanoparticles by Total Scattering and Computer Simulations , 2013 .

[51]  G. Henkelman,et al.  A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles , 2013 .

[52]  A. Kuzmin,et al.  Probing vacancies in NiO nanoparticles by EXAFS and molecular dynamics simulations , 2013 .

[53]  Chris-Kriton Skylaris,et al.  The application of molecular dynamics to fitting EXAFS data , 2013 .

[54]  Applications of Extended X‐Ray Absorption Fine‐Structure Spectroscopy to Studies of Bimetallic Nanoparticle Catalysts , 2013 .

[55]  Carlo Lamberti,et al.  Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. , 2013, Chemical reviews.

[56]  A. Kuzmin,et al.  Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: Role of nickel vacancies , 2012 .

[57]  A. Laio,et al.  Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation. , 2012, ACS nano.

[58]  D. Vlachos,et al.  Correlating ethylene glycol reforming activity with in-situ EXAFS detection of Ni segregation in supported NiPt bimetallic catalysts , 2012 .

[59]  T. Rahman,et al.  Electronic properties and charge transfer phenomena in Pt nanoparticles on γ-Al2O3: size, shape, support, and adsorbate effects. , 2012, Physical chemistry chemical physics : PCCP.

[60]  Juris Purans,et al.  Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra , 2012, Comput. Phys. Commun..

[61]  Ralph G. Nuzzo,et al.  Influence of adsorbates on the electronic structure, bond strain, and thermal properties of an alumina-supported Pt catalyst. , 2012, ACS nano.

[62]  Chris-Kriton Skylaris,et al.  Fitting EXAFS data using molecular dynamics outputs and a histogram approach , 2012 .

[63]  I. Levin,et al.  Reverse Monte Carlo refinements of nanoscale atomic correlations using powder and single-crystal diffraction data , 2012 .

[64]  R. Ferrando Computational Methods for Predicting the Structures of Nanoalloys , 2012 .

[65]  Emily V. Carino,et al.  Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications , 2011 .

[66]  A. Kuzmin,et al.  Interpretation of the Ni K-edge EXAFS in nanocrystalline nickel oxide using molecular dynamics simulations , 2011 .

[67]  J. Timoshenko,et al.  Molecular dynamics simulations of EXAFS in germanium , 2011 .

[68]  J. Timoshenko,et al.  Probing NiO nanocrystals by EXAFS spectroscopy , 2010 .

[69]  A. Frenkel,et al.  Solving the structure of size-selected Pt nanocatalysts synthesized by inverse micelle encapsulation. , 2010, Journal of the American Chemical Society.

[70]  Aaron Yevick,et al.  Effects of surface disorder on EXAFS modeling of metallic clusters , 2010 .

[71]  Marc R. Knecht,et al.  Peptide template effects for the synthesis and catalytic application of Pd nanoparticle networks , 2010 .

[72]  M. Engelhard,et al.  Defining active catalyst structure and reaction pathways from ab initio molecular dynamics and operando XAFS: dehydrogenation of dimethylaminoborane by rhodium clusters. , 2009, Journal of the American Chemical Society.

[73]  T. Möller,et al.  Small Copper Clusters in Ar Shells: A Study of Local Structure , 2009 .

[74]  R. Johnston,et al.  Theoretical Studies of Palladium−Gold Nanoclusters: Pd−Au Clusters with up to 50 Atoms , 2009 .

[75]  R. Evarestov,et al.  Quantum mechanics–molecular dynamics approach to the interpretation of x-ray absorption spectra , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[76]  Shi-Gang Sun,et al.  Molecular dynamics investigation of shape effects on thermal characteristics of platinum nanoparticles , 2009 .

[77]  R. Nuzzo,et al.  Dynamic structure in supported Pt nanoclusters: Real-time density functional theory and x-ray spectroscopy simulations , 2008 .

[78]  Jian-Min Zuo,et al.  Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. , 2008, Nature materials.

[79]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[80]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[81]  Anatoly I. Frenkel,et al.  Solving the 3D structure of metal nanoparticles , 2007 .

[82]  A. Witkowska,et al.  Local ordering of nanostructured Pt probed by multiple-scattering XAFS , 2007 .

[83]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[84]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[85]  D. D. Johnson,et al.  Shear instabilities in metallic nanoparticles: hydrogen-stabilized structure of Pt37 on carbon. , 2007, Journal of the American Chemical Society.

[86]  Fernando D. Vila,et al.  Theoretical X-Ray Absorption Debye-Waller Factors , 2007, cond-mat/0702397.

[87]  A. Frenkel,et al.  Geometrical Characteristics of Regular Polyhedra: Application to EXAFS Studies of Nanoclusters , 2007 .

[88]  D. Blom,et al.  On the Structure of Au/Pd Bimetallic Nanoparticles , 2007 .

[89]  R. Nuzzo,et al.  Unusual non-bulk properties in nanoscale materials: thermal metal-metal bond contraction of gamma-alumina-supported Pt catalysts. , 2006, Journal of the American Chemical Society.

[90]  A. Rockett,et al.  Origin of bulklike structure and bond length disorder of Pt37 and Pt6Ru31 clusters on carbon: comparison of theory and experiment. , 2006, Journal of the American Chemical Society.

[91]  B. Mierzwa EXAFS studies of bimetallic palladium–cobalt nanoclusters using Molecular Dynamics simulations , 2005 .

[92]  J. Banfield,et al.  Characterization of titanium dioxide nanoparticles using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[93]  A. Trapananti,et al.  Reverse Monte Carlo refinement of molecular and condensed systems by x-ray absorption spectroscopy , 2005 .

[94]  N. Binsted,et al.  The mean square variation of multiple scattering path length by molecular dynamics simulation , 2005 .

[95]  John J. Rehr,et al.  Progress in the theory and interpretation of XANES , 2005 .

[96]  A. Frenkel,et al.  Structural stability of giant polyoxomolybdate molecules as probed by EXAFS , 2005 .

[97]  Daniel Haskel,et al.  Analysis and simulation of the structure of nanoparticles that undergo a surface-driven structural transformation. , 2004, The Journal of chemical physics.

[98]  B. Mierzwa EXAFS as a tool for studies of bimetallic PdCo nanocluster structure , 2004 .

[99]  F. Pederiva,et al.  Local thermal expansion in copper: Extended x-ray-absorption fine-structure measurements and path-integral Monte Carlo calculations , 2003 .

[100]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles and their applications to catalysis , 2003 .

[101]  Irene Yarovsky,et al.  Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo , 2002 .

[102]  A. Witkowska,et al.  Testing interaction models by using x-ray absorption spectroscopy: solid Pb , 2002 .

[103]  R. Mcgreevy,et al.  Reverse Monte Carlo modelling , 2001 .

[104]  C. Catlow,et al.  New insights into the structure of supported bimetallic nanocluster catalysts prepared from carbonylated precursors: a combined density functional theory and EXAFS study , 2001 .

[105]  Jens K. Nørskov,et al.  Structure and Reactivity of Ni−Au Nanoparticle Catalysts , 2001 .

[106]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[107]  A. Filipponi EXAFS for liquids , 2001 .

[108]  A. Young,et al.  Convergence of Monte Carlo simulations to equilibrium. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[110]  J. Nørskov,et al.  Asymmetric pair distribution functions in catalysts , 2000 .

[111]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[112]  A. Frenkel Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. , 1999, Journal of synchrotron radiation.

[113]  A. Ankudinov,et al.  REAL-SPACE MULTIPLE-SCATTERING CALCULATION AND INTERPRETATION OF X-RAY-ABSORPTION NEAR-EDGE STRUCTURE , 1998 .

[114]  G. Dalba,et al.  EXAFS Debye-Waller factor and thermal vibrations of crystals. , 1997, Journal of synchrotron radiation.

[115]  A. Ruban,et al.  ALLOY FORMATION AND SURFACE SEGREGATION IN ZEOLITE-SUPPORTED PT-PD BIMETALLIC CATALYSTS , 1997 .

[116]  D. Pfund,et al.  Direct Modeling of EXAFS Spectra from Molecular Dynamics Simulations , 1996 .

[117]  Parker,et al.  Molecular-dynamics simulations of nickel oxide surfaces. , 1995, Physical review. B, Condensed matter.

[118]  Jens K. Nørskov,et al.  Determination of metal particle sizes from EXAFS , 1994 .

[119]  J. Purans,et al.  The influence of the focusing effect on the X-ray absorption fine structure above all the tungsten L edges in non-stoichiometric tungsten oxides , 1993 .

[120]  Stern,et al.  Buckled crystalline structure of mixed ionic salts. , 1993, Physical review letters.

[121]  Frenkel,et al.  Thermal expansion and x-ray-absorption fine-structure cumulants. , 1993, Physical review. B, Condensed matter.

[122]  Jens K. Nørskov,et al.  A New Procedure for Particle Size Determination by EXAFS Based on Molecular Dynamics Simulations , 1993 .

[123]  Jens K. Nørskov,et al.  The Effect of Anharmonicity on the EXAFS Coordination Number in Small Metallic Particles , 1993 .

[124]  R. Mcgreevy,et al.  RMC: MODELING DISORDERED STRUCTURES , 1992 .

[125]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[126]  R. Mcgreevy,et al.  Reverse Monte Carlo simulation for the analysis of EXAFS data , 1990 .

[127]  Hansen,et al.  Is there a contraction of the interatomic distance in small metal particles? , 1990, Physical review letters.

[128]  A. Sutton,et al.  Long-range Finnis–Sinclair potentials , 1990 .

[129]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[130]  D. Koningsberger,et al.  X-ray absorption : principles, applications, techniques of EXAFS, SEXAFS and XANES , 1988 .

[131]  Boon K. Teo,et al.  Theory of EXAFS , 1986 .

[132]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[133]  F. Lytle,et al.  Application of EXAFS in Catalysis. Structure of Bimetallic Cluster Catalysts , 1984 .

[134]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[135]  J. Boyce,et al.  EXAFS as a probe of atom-atom interaction potentials: AgI and CuI , 1980 .

[136]  Edward A. Stern,et al.  New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-Ray—Absorption Fine Structure , 1971 .

[137]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.