Nanocelluloses: a new family of nature-based materials.

Cellulose fibrils with widths in the nanometer range are nature-based materials with unique and potentially useful features. Most importantly, these novel nanocelluloses open up the strongly expanding fields of sustainable materials and nanocomposites, as well as medical and life-science devices, to the natural polymer cellulose. The nanodimensions of the structural elements result in a high surface area and hence the powerful interaction of these celluloses with surrounding species, such as water, organic and polymeric compounds, nanoparticles, and living cells. This Review assembles the current knowledge on the isolation of microfibrillated cellulose from wood and its application in nanocomposites; the preparation of nanocrystalline cellulose and its use as a reinforcing agent; and the biofabrication of bacterial nanocellulose, as well as its evaluation as a biomaterial for medical implants.

[1]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[2]  Paul Gatenholm,et al.  Bacterial Nanocellulose as a Renewable Material for Biomedical Applications , 2010 .

[3]  Rainer Erdmann,et al.  White biotechnology for cellulose manufacturing—The HoLiR concept , 2009, Biotechnology and bioengineering.

[4]  Se Youn Cho,et al.  Transparent conducting films based on nanofibrous polymeric membranes and single‐walled carbon nanotubes , 2009 .

[5]  Amir Sani,et al.  Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods , 2009 .

[6]  Q. Hao,et al.  In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance , 2009 .

[7]  Thorsten Wahlers,et al.  Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes , 2009 .

[8]  F. M. Gama,et al.  BC nanofibres: in vitro study of genotoxicity and cell proliferation. , 2009, Toxicology letters.

[9]  J. Gong,et al.  Orientated Bacterial Cellulose Culture Controlled by Liquid Substrate of Silicone Oil with Different Viscosity and Thickness , 2009 .

[10]  P. Chang,et al.  Effects of polymer‐grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): A case of cellulose whisker‐graft‐polycaprolactone , 2009 .

[11]  Y. Dahman Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. , 2009, Journal of nanoscience and nanotechnology.

[12]  H. Yano,et al.  Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. , 2009, Biomacromolecules.

[13]  J. Tanguay,et al.  Evaluation of the efficacy and safety of a stent covered with biosynthetic cellulose in a rabbit iliac artery model. , 2009, The Journal of invasive cardiology.

[14]  R. Singhal,et al.  Microbial Cellulose: Fermentative Production and Applications , 2009 .

[15]  Lina Zhang,et al.  Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers , 2009 .

[16]  A. N. Nakagaito,et al.  Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process , 2009 .

[17]  Dieter Klemm,et al.  Nanocellulose Materials – Different Cellulose, Different Functionality , 2009 .

[18]  Dieter Klemm,et al.  Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives , 2009 .

[19]  C. Rawn,et al.  A resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration , 2009 .

[20]  P. Chang,et al.  Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time , 2009 .

[21]  K. Oksman,et al.  Dispersion and properties of cellulose nanowhiskers and layered silicates in cellulose acetate butyrate nanocomposites , 2009 .

[22]  Lina Zhang,et al.  Properties of films composed of cellulose nanowhiskers and a cellulose matrix regenerated from alkali/urea solution. , 2009, Biomacromolecules.

[23]  H. Kosmehl,et al.  Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose. , 2009, European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery.

[24]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[25]  Christoph Weder,et al.  Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose. , 2009, Biomacromolecules.

[26]  W. Thielemans,et al.  Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). , 2009, Langmuir : the ACS journal of surfaces and colloids.

[27]  C. Weder,et al.  Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub , 2009 .

[28]  Yurong Cai,et al.  Cellulose whiskers extracted from mulberry: A novel biomass production , 2009 .

[29]  Mikael S. Hedenqvist,et al.  Reduced water vapour sorption in cellulose nanocomposites with starch matrix , 2009 .

[30]  Ton Peijs,et al.  All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose , 2009 .

[31]  A. Dufresne,et al.  Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. , 2009, Biomacromolecules.

[32]  J. Dorgan,et al.  Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. , 2009, Biomacromolecules.

[33]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[34]  A. Ragauskas,et al.  A novel nanocomposite film prepared from crosslinked cellulosic whiskers , 2009 .

[35]  Weihua Tang,et al.  The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane , 2009 .

[36]  Kristin Syverud,et al.  Strength and barrier properties of MFC films , 2009 .

[37]  Susan Trulove Invention controls weavers of nanoscale biomaterials , 2008 .

[38]  Olli Ikkala,et al.  Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities , 2008 .

[39]  Gunnar Westman,et al.  Cationic surface functionalization of cellulose nanocrystals , 2008 .

[40]  R. Tannenbaum,et al.  Biobased Nanocomposites Prepared by In Situ Polymerization of Furfuryl Alcohol with Cellulose Whiskers or Montmorillonite Clay , 2008 .

[41]  P. Dubois,et al.  Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization , 2008 .

[42]  Mark Stumborg,et al.  Green composites reinforced with hemp nanocrystals in plasticized starch , 2008 .

[43]  R. Hill Elastic modulus of microfibrillar cellulose gels. , 2008, Biomacromolecules.

[44]  A. Hult,et al.  Surface grafting of microfibrillated cellulose with poly(e-caprolactone) - Synthesis and characterization , 2008 .

[45]  Kristin Syverud,et al.  The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper , 2008 .

[46]  A. Dufresne,et al.  Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites , 2008 .

[47]  S. Thomas A review of the physical, biological and clinical properties of a bacterial cellulose wound dressing. , 2008, Journal of wound care.

[48]  Lucian A. Lucia,et al.  CELLULOSIC NANOCOMPOSITES: A REVIEW , 2008 .

[49]  John Simonsen,et al.  Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes , 2008 .

[50]  E. Cranston,et al.  Birefringence in spin-coated films containing cellulose nanocrystals , 2008 .

[51]  H. Yano,et al.  Cellulose nanofiber-reinforced polylactic acid , 2008 .

[52]  Alain Dufresne,et al.  Polysaccharide nano crystal reinforced nanocomposites , 2008 .

[53]  K. Wilson,et al.  Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. , 2008, Biomacromolecules.

[54]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[55]  Wadood Y. Hamad,et al.  On the Development and Applications of Cellulosic Nanofibrillar and Nanocrystalline Materials , 2008 .

[56]  Younes Messaddeq,et al.  Self-supported silver nanoparticles containing bacterial cellulose membranes , 2008 .

[57]  L. Berglund,et al.  Biomimetic Foams of High Mechanical Performance Based on Nanostructured Cell Walls Reinforced by Native Cellulose Nanofibrils , 2008 .

[58]  Thawatchai Maneerung,et al.  Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing , 2008 .

[59]  M. Österberg,et al.  Cellulose nanofibrils—adsorption with poly(amideamine) epichlorohydrin studied by QCM-D and application as a paper strength additive , 2008 .

[60]  D. Gray Transcrystallization of polypropylene at cellulose nanocrystal surfaces , 2008 .

[61]  H. Yano,et al.  Toughness enhancement of cellulose nanocomposites by alkali treatment of the reinforcing cellulose nanofibers , 2008 .

[62]  P. Askeland,et al.  Surface modification of microfibrillated cellulose for epoxy composite applications , 2008 .

[63]  K. Oksman,et al.  Novel nanocomposites based on polyurethane and micro fibrillated cellulose , 2008 .

[64]  P. Claesson,et al.  Buildup of polyelectrolyte multilayers of polyethyleneimine and microfibrillated cellulose studied by in situ dual-polarization interferometry and quartz crystal microbalance with dissipation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[65]  Kentaro Abe,et al.  The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. , 2008, Biomacromolecules.

[66]  H. Maeda,et al.  Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles , 2008 .

[67]  Per Stenstad,et al.  Chemical surface modifications of microfibrillated cellulose , 2008 .

[68]  A. Shchukarev,et al.  Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces. , 2008, Journal of colloid and interface science.

[69]  Magnus Norgren,et al.  The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[70]  Ryan Mills,et al.  Adhesion and Surface Issues in Cellulose and Nanocellulose , 2008 .

[71]  J. Putaux,et al.  The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. , 2008, Biomacromolecules.

[72]  Lynn A. Capadona,et al.  A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. , 2007, Nature nanotechnology.

[73]  Dale W. Schaefer,et al.  How Nano Are Nanocomposites , 2007 .

[74]  Shuping Dong,et al.  Fluorescently labeled cellulose nanocrystals for bioimaging applications. , 2007, Journal of the American Chemical Society.

[75]  Ye Daiyong Preparation of Nanocellulose , 2007 .

[76]  H. Yano,et al.  Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. , 2007, Biomacromolecules.

[77]  K. Oksman,et al.  Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials , 2007 .

[78]  Bei Wang,et al.  Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers , 2007 .

[79]  Kentaro Abe,et al.  Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. , 2007, Biomacromolecules.

[80]  Gunnar Henriksson,et al.  An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers , 2007 .

[81]  Seung‐Hwan Lee,et al.  Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers , 2007 .

[82]  L. Berglund,et al.  Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. , 2007, Biomacromolecules.

[83]  Mikael Gällstedt,et al.  Enhancement of the wet properties of transparent chitosan-acetic-acid-salt films using microfibrillated cellulose. , 2007, Biomacromolecules.

[84]  A. N. Nakagaito,et al.  Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites , 2007 .

[85]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[86]  P. Stenius,et al.  Water‐in‐oil Emulsions Stabilized by Hydrophobized Microfibrillated Cellulose , 2007 .

[87]  J. Capadona,et al.  Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers , 2007 .

[88]  B. Hinterstoisser,et al.  Sugar beet cellulose nanofibril-reinforced composites , 2007 .

[89]  Alain Dufresne,et al.  Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading , 2007 .

[90]  T. Lindström,et al.  The influence of colloidal interactions on fiber network strength. , 2007, Journal of colloid and interface science.

[91]  O. Ikkala,et al.  Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. , 2007, Biomacromolecules.

[92]  Y. Uraki,et al.  Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus , 2007 .

[93]  J. Lagarón,et al.  Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose , 2007 .

[94]  A. Ragauskas,et al.  Investigation into nanocellulosics versus acacia reinforced acrylic films , 2007 .

[95]  D. Gray,et al.  Triphase equilibria in cellulose nanocrystal suspensions containing neutral and charged macromolecules , 2007 .

[96]  J. Hermans Flow of gels of cellulose microcrystals. I. Random and liquid crystalline gels , 2007 .

[97]  D. Gray,et al.  Dispersion of cellulose nanocrystals in polar organic solvents , 2007 .

[98]  Hua Dong,et al.  New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. , 2007, Biomacromolecules.

[99]  Huajian Gao,et al.  Ultrasonic technique for extracting nanofibers from nature materials , 2007 .

[100]  T. Webster Nanotechnology: Better Materials for All Implants , 2007 .

[101]  Bei Wang,et al.  Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale , 2007 .

[102]  Athanasios Mantalaris,et al.  Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites , 2007 .

[103]  加藤 武伺,et al.  セルローステクノロジー バクテリアセルロースの高付加価値活用--バイオ医療・化粧品産業への応用 , 2007 .

[104]  S. Kamel,et al.  Nanotechnology and its applications in lignocellulosic composites, a mini review , 2007 .

[105]  Marek Kawecki,et al.  The future prospects of microbial cellulose in biomedical applications. , 2007, Biomacromolecules.

[106]  Bei Wang,et al.  Dispersion of soybean stock‐based nanofiber in a plastic matrix , 2007 .

[107]  D. Klemm,et al.  Nanocellulose Polymer Composites as Innovative Pool for (Bio)Material Development , 2006 .

[108]  K. Oksman,et al.  Manufacturing process of cellulose whiskers/polylactic acid nanocomposites , 2006 .

[109]  M. Vignon,et al.  TEMPO-mediated surface oxidation of cellulose whiskers , 2006 .

[110]  E. Cranston,et al.  Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. , 2006, Biomacromolecules.

[111]  P. Elsner,et al.  Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro , 2006 .

[112]  Lina Zhang,et al.  Effects of cellulose whiskers on properties of soy protein thermoplastics. , 2006, Macromolecular bioscience.

[113]  K. Oksman,et al.  Cellulose nanocomposites : processing, characterization, and properties , 2006 .

[114]  Akira Isogai,et al.  Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. , 2006, Biomacromolecules.

[115]  Kristiina Oksman,et al.  Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis , 2006 .

[116]  S. Nutt,et al.  Cellulose micro/nanocrystals reinforced polyurethane , 2006 .

[117]  Hyoung-Joon Jin,et al.  Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. , 2006, Biomacromolecules.

[118]  Shigenori Kuga,et al.  Surface acylation of cellulose whiskers by drying aqueous emulsion. , 2006, Biomacromolecules.

[119]  Shannon M. Notley,et al.  Surface forces measurements of spin-coated cellulose thin films with different crystallinity. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[120]  A. Dufresne Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. , 2006, Journal of nanoscience and nanotechnology.

[121]  Paul Gatenholm,et al.  In vivo biocompatibility of bacterial cellulose. , 2006, Journal of biomedical materials research. Part A.

[122]  T. Lindström,et al.  On the indirect polyelectrolyte titration of cellulosic fibers. Conditions for charge stoichiometry and comparison with ESCA. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[123]  Emily D. Cranston,et al.  Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field , 2006 .

[124]  Tom Lindström,et al.  Some ways to decrease fibre suspension flocculation and improve sheet formation , 2006 .

[125]  M. Sain,et al.  Reinforcing potential of wood pulp-derived microfibres in a PVA matrix , 2006 .

[126]  R. Brown,et al.  Microbial cellulose--the natural power to heal wounds. , 2006, Biomaterials.

[127]  Mohini Sain,et al.  ISOLATION OF CELLULOSE MICROFIBRILS – AN ENZYMATIC APPROACH , 2006 .

[128]  John H. Xin,et al.  Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities , 2005 .

[129]  A. N. Nakagaito,et al.  Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix , 2005 .

[130]  T. Zimmermann,et al.  Mechanical and Morphological Properties of Cellulose Fibril Reinforced Nanocomposites , 2005 .

[131]  J. W. Farrent,et al.  High-performance composites from low-cost plant primary cell walls , 2005 .

[132]  Kristiina Oksman,et al.  Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. , 2005, Biomacromolecules.

[133]  N. Kotov,et al.  Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. , 2005, Biomacromolecules.

[134]  M. Nogi,et al.  Optically transparent composites reinforced with plant fiber-based nanofibers , 2005 .

[135]  A. Dufresne,et al.  Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell , 2005 .

[136]  J. Cavaillé,et al.  New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. , 2005, Biomacromolecules.

[137]  A. Dufresne,et al.  POE-based nanocomposite polymer electrolytes reinforced with cellulose whiskers , 2005 .

[138]  T. Kondo,et al.  Behavior of cellulose production of Acetobacter xylinum in 13C-enriched cultivation media including movements on nematic ordered cellulose templates , 2005 .

[139]  H. Fink,et al.  Cellulose: faszinierendes Biopolymer und nachhaltiger Rohstoff , 2005 .

[140]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[141]  W. Wan,et al.  Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[142]  M. Vignon,et al.  Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation , 2005 .

[143]  Hiroyuki Yano,et al.  Optically Transparent Composites Reinforced with Networks of Bacterial Nanofibers , 2005 .

[144]  Fumiko Kimura,et al.  Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[145]  Alain Dufresne,et al.  Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. , 2005, Biomacromolecules.

[146]  M. Roman,et al.  Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. , 2005, Biomacromolecules.

[147]  Alessandro Gandini,et al.  The surface modification of cellulose fibres for use as reinforcing elements in composite materials , 2005 .

[148]  J. Araki,et al.  Influence of surface charge on viscosity behavior of cellulose microcrystal suspension , 1999, Journal of Wood Science.

[149]  R. Brown,et al.  Development of cellulose synthesizing complexes inBoergesenia andValonia , 1988, Protoplasma.

[150]  Ayan Chakraborty,et al.  Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing , 2005 .

[151]  矢野 浩之 解説・主張 バイオナノファイバー:セルロースミクロフィブリルの可能性 , 2005 .

[152]  Hiroyuki Yano,et al.  Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure , 2005 .

[153]  H. Yano,et al.  Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites , 2005 .

[154]  G. Daniel,et al.  Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces , 2004 .

[155]  Yoshihito Osada,et al.  High Mechanical Strength Double‐Network Hydrogel with Bacterial Cellulose , 2004 .

[156]  C. Weder,et al.  Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers , 2004 .

[157]  Thomas Geiger,et al.  Cellulose Fibrils for Polymer Reinforcement , 2004 .

[158]  A. Dufresne,et al.  Cross-Linked Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers , 2004 .

[159]  A. Dufresne,et al.  Tangling Effect in Fibrillated Cellulose Reinforced Nanocomposites , 2004 .

[160]  Redouane Borsali,et al.  Rodlike Cellulose Microcrystals: Structure, Properties, and Applications , 2004 .

[161]  Hiroyuki Yano,et al.  Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network , 2004 .

[162]  Hiroyuki Yano,et al.  The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites , 2004 .

[163]  D. Klemm,et al.  Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium , 2004 .

[164]  A. Dufresne,et al.  Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension , 2004 .

[165]  T. Lindström,et al.  Polyelectrolyte swelling behavior of chlorite delignified spruce wood fibers , 1983, Wood Science and Technology.

[166]  Seung-Hyeon Moon,et al.  Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane , 2004 .

[167]  D. Gray,et al.  Smooth model cellulose I surfaces from nanocrystal suspensions , 2003 .

[168]  Alain Dufresne,et al.  Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. , 2003, Biomacromolecules.

[169]  Gero Decher,et al.  Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials , 2003 .

[170]  A. Dufresne Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals , 2003 .

[171]  M. Wada,et al.  Mechanical properties of Silk fibroin-microcrystalline cellulose composite films , 2002 .

[172]  H. Chanzy,et al.  Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents , 2002 .

[173]  W. Winter,et al.  Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals , 2002 .

[174]  Peter Lindner,et al.  Rodlike Cellulose Whiskers Coated with Surfactant: A Small-Angle Neutron Scattering Characterization , 2002 .

[175]  A. Dufresne,et al.  Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. , 2002, Biomacromolecules.

[176]  Daisuke Tatsumi,et al.  Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions , 2002 .

[177]  Dieter Klemm,et al.  Bacterial synthesized cellulose — artificial blood vessels for microsurgery , 2001 .

[178]  A. Donald,et al.  Structure of Acetobacter cellulose composites in the hydrated state. , 2001, International journal of biological macromolecules.

[179]  R. Dendievel,et al.  Polymer Based Nanocomposites: Effect of Filler-Filler and Filler-Matrix Interactions , 2001 .

[180]  C. Graillat,et al.  New waterborne epoxy coatings based on cellulose nanofillers , 2001 .

[181]  A. Dufresne,et al.  Plasticized Starch/Tunicin Whiskers Nanocomposite Materials. 2. Mechanical Behavior , 2001 .

[182]  M. Vignon,et al.  Isolation and NMR characterisation of a (4-O-methyl-D-glucurono)-D-xylan from sugar beet pulp. , 2001, Carbohydrate research.

[183]  J. Desbrières,et al.  Rheological characterization of cellulosic microfibril suspensions. Role of polymeric additives , 2001 .

[184]  J. Araki,et al.  Steric Stabilization of a Cellulose Microcrystal Suspension by Poly(ethylene glycol) Grafting , 2001 .

[185]  A. Dufresne,et al.  Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis , 2000 .

[186]  L. Heux,et al.  Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents , 2000 .

[187]  J. Sugiyama,et al.  Structural modification of bacterial cellulose , 2000 .

[188]  Alain Dufresne,et al.  Cellulose microfibrils from potato tuber cells: Processing and characterization of starch–cellulose microfibril composites , 2000 .

[189]  S. Matthews,et al.  Cellulose Crystallites: A New and Robust Liquid Crystalline Medium for the Measurement of Residual Dipolar Couplings , 2000 .

[190]  Takeshi Okano,et al.  Birefringent Glassy Phase of a Cellulose Microcrystal Suspension , 2000 .

[191]  A. Dufresne,et al.  Transcrystallization in Mcl-PHAs/Cellulose Whiskers Composites , 1999 .

[192]  M. Vignon,et al.  Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR , 1999 .

[193]  J. Cavaillé,et al.  Mechanical behaviour above Tg of a plasticised PVC reinforced with cellulose whiskers; a SANS structural study , 1999 .

[194]  A. Dufresne,et al.  Polysaccharide Microcrystals Reinforced Amorphous Poly(β-hydroxyoctanoate) Nanocomposite Materials , 1999 .

[195]  H. Chanzy,et al.  Suspensions of cellulose microfibrils from sugar beet pulp , 1999 .

[196]  R. Dendievel,et al.  Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers , 1999 .

[197]  J. Cavaillé,et al.  A Small-Angle Scattering Study of Cellulose Whiskers in Aqueous Suspensions , 1999 .

[198]  Minoru Fujita,et al.  Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan , 1998 .

[199]  S. Tokura,et al.  Biosynthesis of hetero-polysaccharides by Acetobacter xylinum - Synthesis and characterization of metal-ion adsorptive properties of partially carboxymethylated cellulose , 1998 .

[200]  Takeshi Okano,et al.  Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose , 1998 .

[201]  Takashi Taniguchi,et al.  New films produced from microfibrillated natural fibres , 1998 .

[202]  Per Tomas Larsson,et al.  Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy , 1998 .

[203]  B. Dahlke,et al.  Natural Fiber Reinforced Foams Based on Renewable Resources for Automotive Interior Applications , 1998 .

[204]  A. Dufresne,et al.  Improvement of Starch Film Performances Using Cellulose Microfibrils , 1998 .

[205]  M. Ogawa,et al.  A method for direct harvest of bacterial cellulose filaments during continuous cultivation of Acetobacter xylinum , 1998 .

[206]  A. S. Herrmann,et al.  Construction materials based upon biologically renewable resources—from components to finished parts , 1998 .

[207]  Rainer Jonas,et al.  Production and application of microbial cellulose , 1998 .

[208]  P. D. Wulf,et al.  Improved production of bacterial cellulose and its application potential , 1998 .

[209]  Louis Godbout,et al.  Solid self-assembled films of cellulose with chiral nematic order and optically variable properties , 1998 .

[210]  Y. Sugano,et al.  Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor , 1997 .

[211]  V. Favier,et al.  Mechanical percolation in cellulose whisker nanocomposites , 1997 .

[212]  Per Tomas Larsson,et al.  A CP/MAS13C NMR investigation of molecular ordering in celluloses , 1997 .

[213]  H. Fink,et al.  Investigation of the supramolecular structure of never dried bacterial cellulose , 1997 .

[214]  Alain Dufresne,et al.  Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils , 1997 .

[215]  D. Gray,et al.  Effect of Counterions on Ordered Phase Formation in Suspensions of Charged Rodlike Cellulose Crystallites , 1997 .

[216]  A. Dufresne,et al.  Thermoplastic Nanocomposites Filled With Wheat Straw Cellulose Whiskers. Part II: Effect of Processing and Modeling , 1997 .

[217]  Véronique Favier,et al.  Simulation and modeling of three-dimensional percolating structures: Case of a latex matrix reinforced by a network of cellulose fibers , 1997 .

[218]  M. Vignon,et al.  Parenchymal cell cellulose from sugar beet pulp: preparation and properties , 1996 .

[219]  Alain Dufresne,et al.  Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior , 1996 .

[220]  V. Favier,et al.  Tensile behavior of nanocomposites from latex and cellulose whiskers , 1996 .

[221]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[222]  T. Taniguchi A Microfibrillated Method of Natural Fibers , 1996 .

[223]  K. Nakamae,et al.  Elastic modulus of the crystalline regions of cellulose polymorphs , 1995 .

[224]  Véronique Favier,et al.  Polymer Nanocomposites Reinforced by Cellulose Whiskers , 1995 .

[225]  Véronique Favier,et al.  Nanocomposite materials from latex and cellulose whiskers , 1995 .

[226]  G. Maret,et al.  Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation , 1994 .

[227]  Junji Sugiyama,et al.  Orientation of cellulose microcrystals by strong magnetic fields , 1992 .

[228]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[229]  D. Gray,et al.  Atomic force microscopy of cellulose microfibrils: comparison with transmission electron microscopy , 1992 .

[230]  J. D. Fontana,et al.  Nature of plant stimulators in the production ofAcetobacter xylinum (“tea fungus”) biofilm used in skin therapy , 1991, Applied biochemistry and biotechnology.

[231]  S. Anderson,et al.  Biogenesis of bacterial cellulose. , 1991, Critical reviews in microbiology.

[232]  J. D. Fontana,et al.  Acetobacter cellulose pellicle as a temporary skin substitute , 1990, Applied biochemistry and biotechnology.

[233]  Y. Nishi,et al.  The structure and mechanical properties of sheets prepared from bacterial cellulose , 1989 .

[234]  R. Lathe Phd by thesis , 1988, Nature.

[235]  T. Lindström,et al.  On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials , 1987 .

[236]  T. Lindström,et al.  Polyelectrolytes adsorbed on the surface of cellulosic materials , 1986 .

[237]  D. Gray Chemical characteristics of cellulosic liquid crystals , 1985 .

[238]  Isaac Balberg,et al.  Percolation thresholds in the three-dimensional sticks system , 1984 .

[239]  I. Balberg,et al.  Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks , 1983 .

[240]  C. Haigler,et al.  Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives , 1982, The Journal of cell biology.

[241]  J. Revol On the cross-sectional shape of cellulose crystallites in Valonia ventricosa , 1982 .

[242]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[243]  C. Richardson,et al.  Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[244]  D. Gray,et al.  Liquid Crystalline Structure In Aqueous Hydroxypropyl Cellulose Solutions , 1976 .

[245]  D. Fengel Ideas on the ultrastructural organization of the cell wall components , 1971 .

[246]  F. Morehead,et al.  Some hydrodynamic properties of neutral suspensions of cellulose crystallites as related to size and shape , 1961 .

[247]  F. Morehead,et al.  Liquid Crystal Systems from Fibrillar Polysaccharides , 1959, Nature.

[248]  E. Jenckel,et al.  Transkristallisation in hochmolekularen Stoffen , 1952 .

[249]  P. H. Hermans X-ray investigations on the crystallinity of cellulose , 1951 .

[250]  B. Rånby,et al.  Aqueous Colloidal Solutions of Cellulose Micelles. , 1949 .

[251]  A. Brown XIX.—The chemical action of pure cultivations of bacterium aceti , 1886 .

[252]  A. Brown XLIII.—On an acetic ferment which forms cellulose , 1886 .