Traction BIE solutions for flat cracks

The paper deals with the numerical solution techniques for the traction boundary integral equation (BIE), which describes the opening (and sliding) displacements of the surface of the traction loaded crack or arbitrary planform embedded in an elastic infinite body (buried crack problem). The traction BIE is a singular integral equation of the first kind for the displacement gradients. Its solution poses a number of numerical problems, such as the presence of derivatives of the unknown function in the integral equation, the modeling of the crack front displacement gradient singularity, and the regularization of the equation's singular kernels. All of the above problems have been addressed and solved. Details of the algorithm are provided. Numerical results of a number of crack configurations are presented, demonstrating high accuracy of the method.