Spherical Surfaces

Abstract We study the surfaces of constant positive Gauss curvature in Euclidean 3-space via the harmonicity of the Gauss map. Using the loop group representation, we solve the regular and the singular geometric Cauchy problems for these surfaces, and use these solutions to compute several new examples. We give the criteria on the geometric Cauchy data for the generic singularities, as well as for the cuspidal beaks and cuspidal butterfly singularities. We consider the bifurcations of generic one-parameter families of spherical fronts and provide evidence that suggests that these are the cuspidal beaks, cuspidal butterfly, and one other singularity. We also give the loop group potentials for spherical surfaces with finite-order rotational symmetries and for surfaces with embedded isolated singularities.

[1]  J. Dorfmeister,et al.  Deformations of constant mean curvature surfaces preserving symmetries and the Hopf differential , 2013, 1302.2228.

[2]  D. Brander,et al.  The geometric Cauchy problem for surfaces with Lorentzian harmonic Gauss maps , 2010, 1009.5661.

[3]  M. Kilian,et al.  Dressing CMC n-Noids , 2004 .

[4]  G. Ishikawa,et al.  Singularities of improper affine spheres and surfaces of constant Gaussian curvature , 2005, math/0502154.

[5]  J. Dorfmeister,et al.  Weierstrass type representation of harmonic maps into symmetric spaces , 1998 .

[6]  K. Saji,et al.  Horospherical flat surfaces in Hyperbolic 3-space , 2007 .

[7]  Toshizumi Fukui,et al.  Singularities of parallel surfaces , 2012, 1203.3715.

[8]  K. Saji,et al.  The mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space and "flat" spacelike surfaces , 2009 .

[9]  J. M. Boardman,et al.  Singularities of differentiable maps , 2011 .

[10]  D. Brander Pseudospherical frontals and their singularities , 2015 .

[11]  Martin Kilian,et al.  New Constant Mean Curvature Surfaces , 2000, Exp. Math..

[12]  Sebastian Heller,et al.  Deformations of Symmetric CMC Surfaces in the 3-Sphere , 2013, Exp. Math..

[13]  T. J. Willmore,et al.  An introduction to differential geometry , 1961 .

[14]  J. Dorfmeister,et al.  The Bj\"orling problem for non-minimal constant mean curvature surfaces , 2009, 0908.3274.

[15]  Laurent Hauswirth,et al.  Surfaces of constant curvature in R3 with isolated singularities , 2010, 1007.2523.

[16]  J. Dorfmeister,et al.  Meromorphic potentials and smooth surfaces of constant mean curvature , 1997 .

[17]  Kentaro Saji,et al.  Singularities of flat fronts in hyperbolic space , 2004 .