Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications

Electrochromic (EC) materials and polymer electrolytes are the most imperative and active components in an electrochromic device (ECD). EC materials are able to reversibly change their light absorption properties in a certain wavelength range via redox reactions stimulated by low direct current (dc) potentials of the order of a fraction of volts to a few volts. The redox switching may result in a change in color of the EC materials owing to the generation of new or changes in absorption band in visible region, infrared or even microwave region. In ECDs the electrochromic layers need to be incorporated with supportive components such as electrical contacts and ion conducting electrolytes. The electrolytes play an indispensable role as the prime ionic conduction medium between the electrodes of the EC materials. The expected applications of the electrochromism in numerous fields such as reflective-type display and smart windows/mirrors make these materials of prime importance. In this article we have reviewed several examples from our research work as well as from other researchers' work, describing the recent advancements on the materials that exhibit visible electrochromism and polymer electrolytes for electrochromic devices. The first part of the review is centered on nanostructured inorganic and conjugated polymer-based organic-inorganic hybrid EC materials. The emphasis has been to correlate the structures, morphologies and interfacial interactions of the EC materials to their electronic and ionic properties that influence the EC properties with unique advantages. The second part illustrates the perspectives of polymer electrolytes in electrochromic applications with emphasis on poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA) and polyvinylidene difluoride (PVDF) based polymer electrolytes. The requirements and approaches to optimize the formulation of electrolytes for feasible electrochromic devices have been delineated.

[1]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[2]  D. Ganguli,et al.  Sol–gel electrochromic coatings and devices: A review , 2001 .

[3]  Avanish Kumar Srivastava,et al.  Charge Transport and Electrochromism in Novel Nanocomposite Films of Poly(3,4-ethylenedioxythiophene)-Au Nanoparticles−CdSe Quantum Dots , 2010 .

[4]  Peter J. Murphy,et al.  Faradaic charge corrected colouration efficiency measurements for electrochromic devices , 2008 .

[5]  Toralf Beitz,et al.  Self-assembled polyelectrolyte systems , 2001 .

[6]  M. Armand,et al.  Voltammetric and potentiostatic studies of the interface WO3/polyethylene oxide-H3PO4 , 1988 .

[7]  S. A. Agnihotry,et al.  PMMA based gel electrolyte for EC smart windows , 1999 .

[8]  I. Jerman,et al.  Imidazolium-based ionic liquid derivatives for application in electrochromic devices , 2008 .

[9]  Jiahua Zhu,et al.  Enhanced Electrical Switching and Electrochromic Properties of Poly(p‐phenylenebenzobisthiazole) Thin Films Embedded with Nano‐WO3 , 2010 .

[10]  L. Toppare,et al.  New, Highly Stable Electrochromic Polymers from 3,4-Ethylenedioxythiophene−Bis-Substituted Quinoxalines toward Green Polymeric Materials , 2007 .

[11]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[12]  M. Ward,et al.  Facile preparation of a visible- and near-infrared-active electrochromic film by direct deposition of a ruthenium dioxolene complex on an ITO/glass surface , 2005 .

[13]  G. Sotzing,et al.  A simple, low waste and versatile procedure to make polymer electrochromic devices , 2011 .

[14]  Jinmin Wang,et al.  Controlled synthesis of WO3 nanorods and their electrochromic properties in H2SO4 electrolyte , 2009 .

[15]  J. Pomposo,et al.  Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices , 2006 .

[16]  Bruno Scrosati,et al.  Polymer electrolytes: Present, past and future , 2011 .

[17]  Elvira Fortunato,et al.  Studies of solid state electrochromic devices based on PEO/siliceous hybrids doped with lithium perchlorate , 2007 .

[18]  Bruce Dunn,et al.  Covalently Bonded Polyaniline−TiO2 Hybrids: A Facile Approach to Highly Stable Anodic Electrochromic Materials with Low Oxidation Potentials , 2010 .

[19]  Cong-jie Gao,et al.  Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications , 2011 .

[20]  B. Scrosati,et al.  The electrochromic characteristics of titanium oxide thin film electrodes , 1986 .

[21]  Claes-Göran Granqvist,et al.  Electrochromic tungsten oxide films: Review of progress 1993–1998 , 2000 .

[22]  Fred Wudl,et al.  A red, green, and blue (RGB) polymeric electrochromic device (PECD): the dawning of the PECD era. , 2004, Angewandte Chemie.

[23]  Jaewoon Jung,et al.  One-pot synthesis of hybrid TiO2-polyaniline nanoparticles by self-catalyzed hydroamination and oxidative polymerization from TiO2-methacrylic acid nanoparticles. , 2011, Chemical communications.

[24]  R. Montazami,et al.  High-contrast solid-state electrochromic devices of viologen-bridged polysilsesquioxane nanoparticles fabricated by layer-by-layer assembly. , 2009, ACS applied materials & interfaces.

[25]  I. Jerman,et al.  POSS based ionic liquid as an electrolyte for hybrid electrochromic devices , 2011 .

[26]  Xuehong Lu,et al.  Toward electrochromic device using solid electrolyte with polar polymer host. , 2009, The journal of physical chemistry. B.

[27]  Xiao-Zi Yuan,et al.  A review of accelerated conditioning for a polymer electrolyte membrane fuel cell , 2011 .

[28]  A. Pawlicka,et al.  Development of electrochromic devices. , 2009, Recent patents on nanotechnology.

[29]  Xuehong Lu,et al.  High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices. , 2011, Physical chemistry chemical physics : PCCP.

[30]  A. Nogueira,et al.  Electrochromic devices based on poly(3-methylthiophene) and various secondary electrochromic materials , 2010 .

[31]  Levent Toppare,et al.  A neutral state green polymer with a superior transmissive light blue oxidized state. , 2007, Chemical communications.

[32]  John R. Reynolds,et al.  Electrochromic organic and polymeric materials for display applications , 2006, Displays.

[33]  E. Fortunato,et al.  Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays , 2010 .

[34]  Y. Nah,et al.  Enhanced electrochromic absorption in Ag nanoparticle embedded conjugated polymer composite films , 2007 .

[35]  S. A. Agnihotry,et al.  Composite gel electrolytes based on poly(methylmethacrylate) and hydrophilic fumed silica , 2004 .

[36]  Xuehong Lu,et al.  Star-like polyaniline prepared from octa(aminophenyl) silsesquioxane : Enhanced electrochromic contrast and electrochemical stability , 2008 .

[37]  Jianwei Xu,et al.  Thermal stability of ionic liquid-loaded electrospun poly(vinylidene fluoride) membranes and its inf , 2011 .

[38]  Zuhong Lu,et al.  All-solid-state electrochromic window of prussian blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte , 1998 .

[39]  Norihisa Kobayashi,et al.  Gel electrolyte-based flexible electrochromic devices showing subtractive primary colors , 2007 .

[40]  Elvira Fortunato,et al.  Gelatin in electrochromic devices , 2010 .

[41]  A. V. Kadam,et al.  Multicoloured electrochromic thin films of NiO/PANI , 2010 .

[42]  C. Wan,et al.  Review of gel-type polymer electrolytes for lithium-ion batteries , 1999 .

[43]  V. Birss,et al.  Electrochemical formation of Ir oxide/polyaniline composite films , 2008 .

[44]  J. Tu,et al.  Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation , 2011 .

[45]  Yongxiang Li,et al.  Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability , 2008 .

[46]  D. Singh,et al.  Influence of polyethylene glycol template on microstructure and electrochromic properties of tungsten oxide , 2008 .

[47]  John R. Reynolds,et al.  High Contrast Ratio and Fast-Switching Dual Polymer Electrochromic Devices , 1998 .

[48]  Enrico Masetti,et al.  A comparison of the electrochromic properties of WO3 films intercalated with H+, Li+ and Na+ , 1996 .

[49]  G. Muralidharan,et al.  Optical, structural and electrochromic studies of molybdenum oxide thin films with nanorod structure , 2010 .

[50]  A. Mendes,et al.  Segmented polymer electrolyte membrane fuel cells--A review , 2011 .

[51]  Bruno Scrosati,et al.  Electrochromic windows based on polyaniline, tungsten oxide and gel electrolytes , 1995 .

[52]  M. Deepa,et al.  Poly(3,4-ethylenedioxythiophene)-ionic liquid functionalized graphene/reduced graphene oxide nanostructures: improved conduction and electrochromism. , 2011, ACS applied materials & interfaces.

[53]  M. Aegerter,et al.  Electrochromic Window with Lithium Conductive Polymer Electrolyte , 1991 .

[54]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .

[55]  M. Deepa,et al.  Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated MWCNTs tethered to conducting substrates: facile electrochemistry and enhanced coloring efficiency , 2008 .

[56]  J. Reiter,et al.  PMMA-based aprotic gel electrolytes , 2004 .

[57]  K. S. Nahm,et al.  Review on composite polymer electrolytes for lithium batteries , 2006 .

[58]  M. Aegerter,et al.  Electrochromic smart windows , 1992 .

[59]  Bruno Scrosati,et al.  Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices , 2006 .

[60]  J. Reynolds,et al.  The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. , 2008, Nature materials.

[61]  Chien-Hsin Yang,et al.  Simultaneous Molecular-Layer Assembly and Copolymerization of Aniline and o-Aminobenzenesulfonic Acid for Application in Electrochromic Devices , 2007 .

[62]  Anders Hjelm,et al.  Recent Advances in Electrochromics for Smart Windows Applications , 1998, Optical Interference Coatings.

[63]  Peter J. Murphy,et al.  Gel electrolytes with ionic liquid plasticiser for electrochromic devices , 2011 .

[64]  J. R. Stevens,et al.  Electrochromic Li(x)WO(3)/poymer laminate/Li(y)V(2)O(5) device: toward an all-solid-state smart window. , 1989, Applied optics.

[65]  M. Dissanayake,et al.  Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf , 2007 .

[66]  J. Reynolds,et al.  Unsaturated Linkages in Dioxythiophene−Benzothiadiazole Donor−Acceptor Electrochromic Polymers: The Key Role of Conformational Freedom , 2009 .

[67]  A. Cihaner,et al.  Donor−Acceptor Polymer Electrochromes with Tunable Colors and Performance , 2010 .

[68]  Jinmin Wang,et al.  Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods , 2008 .

[69]  E. Fortunato,et al.  Application of hybrid materials in solid-state electrochromic devices , 2009 .

[70]  P. Hammond,et al.  High-Contrast Electrochromic Thin Films via Layer-by-Layer Assembly of Starlike and Sulfonated Polyaniline , 2010 .

[71]  X. Xia,et al.  Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles , 2011 .

[72]  Bobby To,et al.  Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications , 2006 .

[73]  L. Mai,et al.  Effect of modification by poly(ethylene oxide) on the reversibility of insertion/extraction of Li+ ion in V2O5 xerogel films , 2002 .

[74]  G. Shi,et al.  Layer-by-layer assembly of graphene/polyaniline multilayer films and their application for electrochromic devices , 2011 .

[75]  John R. Reynolds,et al.  Poly(3,4-ethylenedioxypyrrole): Organic Electrochemistry of a Highly Stable Electrochromic Polymer , 2000 .

[76]  Shusheng Zhang,et al.  A new electrochromic material from an indole derivative and its application in high-quality electrochromic devices , 2010 .

[77]  U. Bulut,et al.  Dual-type electrochromic devices based on conducting copolymers of thiophene-functionalized monomers , 2005 .

[78]  I. Raptis,et al.  Polymeric electrolytes for WO3-based all solid-state electrochromic displays , 2006 .

[79]  Jenq-Neng Hwang,et al.  Multicolored Electrochromism in Polymers: Structures and Devices , 2004 .

[80]  J. Tu,et al.  Multicolor and fast electrochromism of nanoporous NiO/poly(3,4-ethylenedioxythiophene) composite thin film , 2009 .

[81]  M. Liberatore,et al.  Increasing viscosity in entangled polyelectrolyte solutions by the addition of salt , 2011 .

[82]  Pierre M Beaujuge,et al.  Material strategies for black-to-transmissive window-type polymer electrochromic devices. , 2011, ACS applied materials & interfaces.

[83]  J. R. Stevens,et al.  Dynamics of the hydrogen and phosphate ions in proton conducting gel/D3PO4 electrolytes: A 2H and 31P nuclear magnetic resonance study , 1999 .

[84]  J. Randin,et al.  Proton Diffusion in Tungsten Trioxide Thin Films , 1982 .

[85]  E. Fortunato,et al.  Li(+)- and Eu(³+)-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. , 2011, ACS applied materials & interfaces.

[86]  Fatma Z. Tepehan,et al.  Sol–gel deposited nickel oxide films for electrochromic applications , 2008 .

[87]  T. Wen,et al.  Novel electrochromic devices based on composite films of poly(2,5-dimethoxyaniline)-waterborne polyurethane , 2005 .

[88]  Levent Toppare,et al.  Donor-acceptor type random copolymers for full visible light absorption. , 2011, Chemical communications.

[89]  C. Sequeira,et al.  Tungsten Oxide Electrochromic Windows with Lithium Polymer Electrolytes , 2009, ECS Transactions.

[90]  H. Tada,et al.  Electrochromic windows using a solid polymer electrolyte , 1987 .

[91]  Bruno Valla,et al.  Solid state electrochromic display based on polymer electrode-polymer electrolyte interface , 1992 .

[92]  J. Reynolds,et al.  The First Truly All‐Polymer Electrochromic Devices , 2003 .

[93]  Yongxiang Li,et al.  Fabricating red-blue-switching dual polymer electrochromic devices using room temperature ionic liquid , 2009 .

[94]  K. Ho,et al.  A study on the electrochromic properties of polyaniline/silica composite films with an enhanced optical contrast , 2009 .

[95]  Kuo-Chuan Ho,et al.  A novel photoelectrochromic device with dual application based on poly(3,4-alkylenedioxythiophene) thin film and an organic dye , 2008 .

[96]  M. Sunkara,et al.  Nanowire-based electrochromic devices , 2007 .

[97]  M. Deepa,et al.  Poly(3,4-Ethylenedioxypyrrole) Enwrapped by Reduced Graphene Oxide: How Conduction Behavior at Nanolevel Leads to Increased Electrochemical Activity , 2011 .

[98]  A. L. Dyer,et al.  Navigating the Color Palette of Solution-Processable Electrochromic Polymers† , 2011 .

[99]  J. Reynolds,et al.  Spray‐Processable Blue‐to‐Highly Transmissive Switching Polymer Electrochromes via the Donor–Acceptor Approach , 2010, Advanced materials.

[100]  John R. Platt,et al.  Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field , 1961 .

[101]  Richard S. Crandall,et al.  Measurement of the diffusion coefficient of electrons in WO3 films , 1975 .

[102]  M. Higuchi Electrochromic Organic-Metallic Hybrid Polymers: Fundamentals and Device Applications , 2009 .

[103]  P. Somani,et al.  Electrochromic materials and devices: present and future , 2003, Materials Chemistry and Physics.

[104]  P. Yianoulis,et al.  High coloration performance of electrochromic devices assembled with electrolytes based on a branched boronate ester polymer and lithium perchlorate salt , 2006 .

[105]  J. Randin Ion‐Containing Polymers as Semisolid Electrolytes in WO 3 ‐ Based Electrochromic Devices , 1982 .

[106]  Pooi See Lee,et al.  Supercritical Carbon Dioxide-Treated Electrospun Poly(vinylidene fluoride) Nanofibrous Membranes: Morphology, Structures and Properties as an Ionic-Liquid Host. , 2010, Macromolecular rapid communications.

[107]  Dhurjati S. K. Mudigonda,et al.  Electrochromic Properties of Laminate Devices Fabricated from Polyaniline, Poly(ethylenedioxythiophene), and Poly(N-methylpyrrole) , 2001 .

[108]  O. Bohnké,et al.  Polymer‐Based Solid Electrochromic Cell for Matrix‐Addressable Display Devices , 1991 .

[109]  K. Ho,et al.  The Influence of Terminal Effect on the Performance of Electrochromic Windows , 1990 .

[110]  Zuhong Lu,et al.  All solid-state electrochromic smart window of electrodeposited WO3 and prussian blue film with PVC gel electrolyte , 1998 .

[111]  Xuehong Lu,et al.  Enhancement of electrochromic contrast by tethering conjugated polymer chains onto polyhedral oligomeric silsesquioxane nanocages , 2007 .

[112]  H. Kokado,et al.  Electrochromic Display Device Based on Amorphous WO3 and Solid Proton Conductor , 1981 .

[113]  Eleanor S. Lee,et al.  Application issues for large-area electrochromic windows in commercial buildings , 2000 .

[114]  Polyelectrolyte brushes studied by surface forces measurement. , 2010, Advances in colloid and interface science.

[115]  H. Weakliem,et al.  Thin Film Tungsten Oxide Electrochromic Displays , 1988 .

[116]  L. Toppare,et al.  One polymer for all: benzotriazole containing donor-acceptor type polymer as a multi-purpose material. , 2009, Chemical communications.

[117]  F. Wudl,et al.  Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency , 2004 .

[118]  John R. Reynolds,et al.  Black to Transmissive Switching in a Pseudo Three-Electrode Electrochromic Device , 2009 .

[119]  P. Hammond,et al.  Multiple-Color Electrochromism from Layer-by-Layer-Assembled Polyaniline/Prussian Blue Nanocomposite Thin Films , 2004 .

[120]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[121]  Andrzej Lewandowski,et al.  Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies , 2009 .

[122]  R. Crandall,et al.  Electronic Transport in Amorphous H_{x}WO_{3} , 1977 .

[123]  P. Yianoulis,et al.  Electrochromic devices operating with electrolytes based on boronate ester compounds and various alkali metal salts , 2007 .

[124]  A. Ribeiro,et al.  Dual-type electrochromic device based on polypyrrole and polythiophene derivatives , 2011 .

[125]  M. Doeff,et al.  Polyorganodisulfide electrodes for solid-state batteries and electrochromic devices , 1993 .

[126]  Fernando Pina,et al.  Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes , 2010 .

[127]  R. A. Wallace,et al.  Ionic transport in a sulfonated polystyrene–polyethylene copolymer , 1976 .

[128]  L. Toppare,et al.  Benzotriazole containing conjugated polymers for multipurpose organic electronic applications , 2011 .

[129]  Xiangkai Fu,et al.  PREPARATION OF STAR NETWORK PEG-BASED GEL POLYMER ELECTROLYTES FOR ELECTROCHROMIC DEVICES , 2008 .

[130]  Michel A. Aegerter,et al.  All solid-state electrochromic devices with gelatin-based electrolyte , 2008 .

[131]  Jianwei Xu,et al.  Synthesis, Electronic, and Emission Spectroscopy, and Electrochromic Characterization of Azulene−Fluorene Conjugated Oligomers and Polymers , 2009 .

[132]  H. Byker Electrochromics and polymers , 2001 .

[133]  Manming Yan,et al.  Electrochromic properties of rhodium oxide films prepared by a sol-gel method , 2001 .

[134]  S. Koyuncu,et al.  A new near-infrared switchable electrochromic polymer and its device application , 2010 .

[135]  Zuhong Lu,et al.  All solid-state electrochromic device with PMMA gel electrolyte , 1998 .

[136]  M. Deepa,et al.  Poly(3,4-ethylenedioxythiophene)-multiwalled carbon nanotube composite films: structure-directed amplified electrochromic response and improved redox activity. , 2009, The journal of physical chemistry. B.

[137]  T. Kubo,et al.  Photo- and electrochemical properties of linked ferrocene and viologen donor-acceptor-type molecules and their application to electrochromic devices , 2008 .

[138]  S. D. Torresi,et al.  Electrochromic behaviour of manganese dioxide electrodes in slightly alkaline solutions , 1992 .

[139]  J. Tu,et al.  Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis , 2011 .

[140]  L. Su,et al.  All-solid-state Electrochromic Window of Electrodeposited WO3 and Prussian Blue with Poly(ethylene oxide) Gel Electrolyte , 1997 .

[141]  Martin S. Miller,et al.  A review of polymer electrolyte membrane fuel cell stack testing , 2011 .

[142]  Fu-Rong Chen,et al.  Annealing effect on electrochromic properties of tungsten oxide nanowires , 2007 .

[143]  L. Toppare,et al.  Donor−Acceptor Polymer with Benzotriazole Moiety: Enhancing the Electrochromic Properties of the “Donor Unit” , 2008 .

[144]  A. V. Kadam,et al.  Simple and rapid synthesis of NiO/PPy thin films with improved electrochromic performance , 2010 .

[145]  B. Kiskan,et al.  Enhancing electrochromic properties of polypyrrole by silsesquioxane nanocages , 2008 .

[146]  Felix B. Dias,et al.  Trends in polymer electrolytes for secondary lithium batteries , 2000 .

[147]  Zuhong Lu,et al.  All solid-state electrochromic window of electrodeposited WO3 and prussian blue film with PVC gel electrolyte , 1998 .

[148]  M. Deepa,et al.  Ionogels encompassing ionic liquid with liquid like performance preferable for fast solid state electrochromic devices , 2007 .

[149]  Jin-Han Lin,et al.  Electrochromic properties of large-area and high-density arrays of transparent one-dimensional β-Ta2O5 nanorods on indium-tin-oxide thin-films , 2011 .

[150]  A. Oral,et al.  Polystyrene functionalized carbazole and electrochromic device application , 2009 .

[151]  David R. Rosseinsky,et al.  Electrochromism and Electrochromic Devices , 2007 .

[152]  D. K. Kim,et al.  Fast switchable electrochromic properties of tungsten oxide nanowire bundles , 2007 .

[153]  Fu-Rong Chen,et al.  Electrochromic properties of nano-structured nickel oxide thin film prepared by spray pyrolysis method , 2008 .

[154]  Ali E Aliev,et al.  Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. , 2008, ACS nano.

[155]  Chien A. Nguyen,et al.  Layer-by-Layer Assembled Solid Polymer Electrolyte for Electrochromic Devices , 2011 .

[156]  Srinivasan Sampath,et al.  Hydrogel-polymer electrolytes for electrochemical capacitors: an overview , 2009 .

[157]  B. Scrosati,et al.  A Polymeric Electrolyte Rechargeable Lithium Battery , 1988 .

[158]  Jiujun Zhang,et al.  A review of polymer electrolyte membranes for direct methanol fuel cells , 2007 .

[159]  Hailing Hu,et al.  Nanostructured polyethylene glycol–titanium oxide composites as solvent-free viscous electrolytes for electrochromic devices , 2011 .

[160]  S. A. Agnihotry,et al.  Li+ conducting gel electrolyte for electrochromic windows , 2000 .

[161]  S. Cogan,et al.  Couter electrodes in transmissive electrochromic light modulators , 1988 .

[162]  Fu-Rong Chen,et al.  Electrochromic property of nano-composite Prussian Blue based thin film , 2007 .

[163]  Y. Sung,et al.  Porous cobalt oxide thin films from low temperature solution phase synthesis for electrochromic electrode , 2008 .

[164]  Yuichi Watanabe,et al.  Preparation and properties of electrochromic iridium oxide thin film by sol-gel process , 1999 .

[165]  S. K. Deb,et al.  A novel electrophotographic system. , 1969, Applied optics.

[166]  Sehee Lee,et al.  Optimization of crystalline tungsten oxide nanoparticles for improved electrochromic applications , 2007 .

[167]  J. Reynolds,et al.  Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. , 2010, Accounts of chemical research.

[168]  Qing Xu,et al.  Electrical and Electrochromic Characterization of Poly (ethylene-oxide)/V2O5 Xerogel Films , 2007 .

[169]  A. Bard,et al.  Plastic Electrochromic Devices: Electrochemical Characterization and Device Properties of a Phenothiazine-Phenylquinoline Donor−Acceptor Polymer , 2003 .

[170]  Yung-Eun Sung,et al.  Electrochromic properties of tungsten oxide nanowires fabricated by electrospinning method , 2009 .

[171]  K. Ho,et al.  Cycling and at-rest stabilities of a complementary electrochromic device containing poly(3,4-ethylenedioxythiophene) and Prussian blue , 2006 .

[172]  David L. Carroll,et al.  Electrochromic properties of conducting polymer metal nanoparticles composites , 2007 .

[173]  José A. Pomposo,et al.  All-plastic electrochromic devices based on PEDOT as switchable optical attenuator in the near IR , 2008 .

[174]  J. Pomposo,et al.  Orange to black electrochromic behaviour in poly(2-(2-thienyl)-1H-pyrrole) thin films , 2007 .

[175]  A. Veltri,et al.  Solid Thermoplastic Laminable Electrochromic Film , 2007 .

[176]  Yun Wang,et al.  A review of polymer electrolyte membrane fuel cells: Technology, applications,and needs on fundamental research , 2011 .

[177]  M. Morita Multicolor electrochromic behavior of polyaniline composite films combined with tungsten trioxide , 1994 .

[178]  Marie Sedlaříková,et al.  Electrochromic devices employing methacrylate-based polymer electrolytes , 2009 .

[179]  R. C. Agrawal,et al.  Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview , 2008 .

[180]  Xuehong Lu,et al.  Water-processable polyaniline with covalently bonded single-walled carbon nanotubes: enhanced electrochromic properties and impedance analysis. , 2011, ACS applied materials & interfaces.

[181]  David Y. Liu,et al.  Broadly Absorbing Black to Transmissive Switching Electrochromic Polymers , 2010, Advanced materials.

[182]  J. Reynolds,et al.  Color control in pi-conjugated organic polymers for use in electrochromic devices. , 2010, Chemical reviews.

[183]  L. Toppare,et al.  Could Green be Greener? Novel Donor–Acceptor‐Type Electrochromic Polymers: Towards Excellent Neutral Green Materials with Exceptional Transmissive Oxidized States for Completion of RGB Color Space , 2008 .

[184]  P. Pennarun,et al.  Electrolytes based on LiClO4 and branched PEG–boronate ester polymers for electrochromics , 2005 .

[185]  P. Hammond,et al.  Enhanced Electrochromic Switching in Multilayer Thin Films of Polyaniline-Tethered Silsesquioxane Nanocage , 2009 .

[186]  E. Fortunato,et al.  Preliminary characterisation of LiAsF6 hybrid polymer electrolytes for electrochromic devices , 2011 .

[187]  S. Beaupré,et al.  Toward the Development of New Textile/Plastic Electrochromic Cells Using Triphenylamine-Based Copolymers , 2006 .

[188]  Anoop Agrawal,et al.  Microstructure and properties of sol-gel deposited WO3 coatings for large area electrochromic windows , 1993 .

[189]  J. Reynolds,et al.  Spray Processable Green to Highly Transmissive Electrochromics via Chemically Polymerizable Donor–Acceptor Heterocyclic Pentamers , 2008, Advanced materials.

[190]  So Yeon Park,et al.  Colloidal approach for tungsten oxide nanorod-based electrochromic systems with highly improved response times and color efficiencies , 2009 .