Digital photonic production along the lines of industry 4.0
暂无分享,去创建一个
Martin Reininghaus | Omid Zarei | John Flemmer | Reinhart Poprawe | Florian Eibl | Wilhelm Meiners | Andres Gasser | Edgar Willenborg | Johannes Finger | Christian Hinke | Maximilian Voshage | Stephan Ziegler | Johannes Henrich Schleifenbaum | Thomas Schopphoven | Christian Weingarten | R. Poprawe | E. Willenborg | A. Gasser | J. Schleifenbaum | M. Voshage | S. Ziegler | C. Hinke | C. Weingarten | W. Meiners | J. Flemmer | M. Reininghaus | J. Finger | Omid Zarei | F. Eibl | Thomas Schopphoven
[1] A. Tünnermann,et al. Plasma evolution during metal ablation with ultrashort laser pulses. , 2005, Optics express.
[2] Jehnming Lin,et al. Temperature analysis of the powder streams in coaxial laser cladding , 1999 .
[3] D. Heussen,et al. Alternative beam sources and machine concepts for laser powder bed fusion , 2017, 2017 IEEE High Power Diode Lasers and Systems Conference (HPD).
[4] H. Hoffmann,et al. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. , 2010, Optics letters.
[5] David T. D. Childs,et al. Laser diode area melting for high speed additive manufacturing of metallic components , 2017 .
[6] Vincenzo Crupi,et al. Static behavior of lattice structures produced via direct metal laser sintering technology , 2017 .
[7] Viktor Schütz,et al. Multi-spot laser processing of crystalline solar cells , 2011, LASE.
[8] Martin Traub,et al. Brightness and average power as driver for advancements in diode lasers and their applications , 2015, Photonics West - Lasers and Applications in Science and Engineering.
[9] Mindaugas Gedvilas,et al. Efficiency aspects in processing of metals with high-repetition-rate ultra-short-pulse lasers , 2008 .
[10] Reinhart Poprawe,et al. Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying , 2016 .
[11] Udo Loeschner,et al. Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality , 2015 .
[12] Guido Hennig,et al. Ultrafast Scan Techniques for 3D-μm Structuring of Metal Surfaces with high repetitive ps-laser pulses , 2011 .
[13] R. Poprawe,et al. Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mit 'Selective Laser Melting' , 2003 .
[14] Edgar Willenborg,et al. Influence of Intensity Distribution and Pulse Duration on Laser Micro Polishing , 2011 .
[15] A. Tünnermann,et al. Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .
[16] Reinhart Poprawe,et al. Disruptive Innovation Through 3D Printing , 2017 .
[17] Günther Schuh,et al. Direct, Mold-Less Production Systems , 2017 .
[18] Ehsan Toyserkani,et al. A hybrid additive manufacturing method for the fabrication of silicone bio-structures: 3D printing optimization and surface characterization , 2018 .
[19] Edgar Willenborg. Polieren mit Laserstrahlung , 2007 .
[20] Simon Merkt,et al. Additive manufacturing: perspectives for diode lasers , 2015, 2015 IEEE High Power Diode Lasers and Systems Conference (HPD).
[21] Martin Reininghaus,et al. Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz. , 2014, Optics express.
[22] Peter Loosen,et al. Design, alignment and applications of optical systems for parallel processing with ultra-short laser pulses , 2014, Photonics Europe.
[23] M. Henry,et al. Laser milling: a practical industrial solution for machining a wide variety of materials , 2004, International Symposium on Laser Precision Microfabrication.
[24] W. Meiners,et al. Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe , 1999 .
[25] Christian Brecher,et al. Integrative Production Technology , 2017 .
[26] Henrich Schleifenbaum,et al. Kostenmodell für das Laserstrahlschmelzen: Kosten- und Leistungskennwerte für die additive Fertigung ermitteln und analysieren , 2017 .
[27] Wolfgang Bleck,et al. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel , 2017, Materials.
[28] P. A. Atanasov,et al. Ablation of metals by ultrashort laser pulses , 2004 .
[29] Jan Bültmann,et al. Mechanical response of TiAl6V4 lattice structures manufactured by selective laser melting in quasistatic and dynamic compression tests , 2015 .
[30] Andres Gasser,et al. EHLA: Extreme High‐Speed Laser Material Deposition , 2017 .
[31] Konrad Wissenbach,et al. Individualized production by means of high power Selective Laser Melting , 2010 .
[32] R. Poprawe,et al. Qualifizierung von generativ gefertigten Gitterstrukturen für maßgeschneiderte Bauteilfunktionen , 2015 .
[33] Reinhart Poprawe,et al. Laserpolieren metallischer Freiformflächen , 2012 .
[34] B. Jaeggi,et al. High-throughput and high-precision laser micromachining with ps-pulses in synchronized mode with a fast polygon line scanner , 2014, Photonics West - Lasers and Applications in Science and Engineering.
[35] Edgar Willenborg,et al. Laser polishing of glass , 2015, SPIE Optifab.
[36] Reinhart Poprawe,et al. SLM Production Systems: Recent Developments in Process Development, Machine Concepts and Component Design , 2015 .
[37] B. Jaeggi,et al. Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs , 2012, LASE.
[38] Hod Lipson,et al. Fabricated: The New World of 3D Printing , 2013 .
[39] John Flemmer,et al. Machine Tool and CAM‐NC Data Chain for Laser Polishing Complex Shaped Parts , 2015 .
[40] Thomas Graf,et al. 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses. , 2013, Optics letters.
[41] Arnold Gillner,et al. High power parallel ultrashort pulse laser processing , 2016, SPIE LASE.
[42] Edgar Willenborg,et al. Glass processing with pulsed CO2 laser radiation. , 2017, Applied optics.
[43] Christian Hinke. Beam sources for metal additive manufacturing — Status quo and requirements , 2017, 2017 IEEE High Power Diode Lasers and Systems Conference (HPD).
[44] Andrew J. Pinkerton,et al. A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding , 2010 .
[45] Reinhart Poprawe,et al. Laser powder bed fusion of stainless steel with high power multi-diode-laser-array , 2018 .
[46] Johannes Finger,et al. High power ultra-short pulse laser ablation of IN718 using high repetition rates , 2015 .
[47] Tino Eidam,et al. Femtosecond fiber CPA system emitting 830 W average output power. , 2010, Optics letters.