Digital photonic production along the lines of industry 4.0

The context of future laser applications in modern manufacturing can be summarized by Digital Photonic Production (DPP). “From Bits to Photons to Atoms” describes the vision of DPP: Designing a component or product in the computer and creating it directly by additive or subtractive photon based processes or production-systems.

[1]  A. Tünnermann,et al.  Plasma evolution during metal ablation with ultrashort laser pulses. , 2005, Optics express.

[2]  Jehnming Lin,et al.  Temperature analysis of the powder streams in coaxial laser cladding , 1999 .

[3]  D. Heussen,et al.  Alternative beam sources and machine concepts for laser powder bed fusion , 2017, 2017 IEEE High Power Diode Lasers and Systems Conference (HPD).

[4]  H. Hoffmann,et al.  Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. , 2010, Optics letters.

[5]  David T. D. Childs,et al.  Laser diode area melting for high speed additive manufacturing of metallic components , 2017 .

[6]  Vincenzo Crupi,et al.  Static behavior of lattice structures produced via direct metal laser sintering technology , 2017 .

[7]  Viktor Schütz,et al.  Multi-spot laser processing of crystalline solar cells , 2011, LASE.

[8]  Martin Traub,et al.  Brightness and average power as driver for advancements in diode lasers and their applications , 2015, Photonics West - Lasers and Applications in Science and Engineering.

[9]  Mindaugas Gedvilas,et al.  Efficiency aspects in processing of metals with high-repetition-rate ultra-short-pulse lasers , 2008 .

[10]  Reinhart Poprawe,et al.  Investigations on ultra-high-speed laser material deposition as alternative for hard chrome plating and thermal spraying , 2016 .

[11]  Udo Loeschner,et al.  Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality , 2015 .

[12]  Guido Hennig,et al.  Ultrafast Scan Techniques for 3D-μm Structuring of Metal Surfaces with high repetitive ps-laser pulses , 2011 .

[13]  R. Poprawe,et al.  Generative Fertigung von Bauteilen aus Werkzeugstahl X38CrMoV5-1 und Titan TiAl6V4 mit 'Selective Laser Melting' , 2003 .

[14]  Edgar Willenborg,et al.  Influence of Intensity Distribution and Pulse Duration on Laser Micro Polishing , 2011 .

[15]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[16]  Reinhart Poprawe,et al.  Disruptive Innovation Through 3D Printing , 2017 .

[17]  Günther Schuh,et al.  Direct, Mold-Less Production Systems , 2017 .

[18]  Ehsan Toyserkani,et al.  A hybrid additive manufacturing method for the fabrication of silicone bio-structures: 3D printing optimization and surface characterization , 2018 .

[19]  Edgar Willenborg Polieren mit Laserstrahlung , 2007 .

[20]  Simon Merkt,et al.  Additive manufacturing: perspectives for diode lasers , 2015, 2015 IEEE High Power Diode Lasers and Systems Conference (HPD).

[21]  Martin Reininghaus,et al.  Effect of pulse to pulse interactions on ultra-short pulse laser drilling of steel with repetition rates up to 10 MHz. , 2014, Optics express.

[22]  Peter Loosen,et al.  Design, alignment and applications of optical systems for parallel processing with ultra-short laser pulses , 2014, Photonics Europe.

[23]  M. Henry,et al.  Laser milling: a practical industrial solution for machining a wide variety of materials , 2004, International Symposium on Laser Precision Microfabrication.

[24]  W. Meiners,et al.  Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe , 1999 .

[25]  Christian Brecher,et al.  Integrative Production Technology , 2017 .

[26]  Henrich Schleifenbaum,et al.  Kostenmodell für das Laserstrahlschmelzen: Kosten- und Leistungskennwerte für die additive Fertigung ermitteln und analysieren , 2017 .

[27]  Wolfgang Bleck,et al.  Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel , 2017, Materials.

[28]  P. A. Atanasov,et al.  Ablation of metals by ultrashort laser pulses , 2004 .

[29]  Jan Bültmann,et al.  Mechanical response of TiAl6V4 lattice structures manufactured by selective laser melting in quasistatic and dynamic compression tests , 2015 .

[30]  Andres Gasser,et al.  EHLA: Extreme High‐Speed Laser Material Deposition , 2017 .

[31]  Konrad Wissenbach,et al.  Individualized production by means of high power Selective Laser Melting , 2010 .

[32]  R. Poprawe,et al.  Qualifizierung von generativ gefertigten Gitterstrukturen für maßgeschneiderte Bauteilfunktionen , 2015 .

[33]  Reinhart Poprawe,et al.  Laserpolieren metallischer Freiformflächen , 2012 .

[34]  B. Jaeggi,et al.  High-throughput and high-precision laser micromachining with ps-pulses in synchronized mode with a fast polygon line scanner , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[35]  Edgar Willenborg,et al.  Laser polishing of glass , 2015, SPIE Optifab.

[36]  Reinhart Poprawe,et al.  SLM Production Systems: Recent Developments in Process Development, Machine Concepts and Component Design , 2015 .

[37]  B. Jaeggi,et al.  Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs , 2012, LASE.

[38]  Hod Lipson,et al.  Fabricated: The New World of 3D Printing , 2013 .

[39]  John Flemmer,et al.  Machine Tool and CAM‐NC Data Chain for Laser Polishing Complex Shaped Parts , 2015 .

[40]  Thomas Graf,et al.  1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses. , 2013, Optics letters.

[41]  Arnold Gillner,et al.  High power parallel ultrashort pulse laser processing , 2016, SPIE LASE.

[42]  Edgar Willenborg,et al.  Glass processing with pulsed CO2 laser radiation. , 2017, Applied optics.

[43]  Christian Hinke Beam sources for metal additive manufacturing — Status quo and requirements , 2017, 2017 IEEE High Power Diode Lasers and Systems Conference (HPD).

[44]  Andrew J. Pinkerton,et al.  A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding , 2010 .

[45]  Reinhart Poprawe,et al.  Laser powder bed fusion of stainless steel with high power multi-diode-laser-array , 2018 .

[46]  Johannes Finger,et al.  High power ultra-short pulse laser ablation of IN718 using high repetition rates , 2015 .

[47]  Tino Eidam,et al.  Femtosecond fiber CPA system emitting 830 W average output power. , 2010, Optics letters.