Neuronal basis of contrast discrimination

[1]  T. Parrish,et al.  Functional MR imaging. , 1999, Magnetic resonance imaging clinics of North America.

[2]  D. Heeger,et al.  Functional Magnetic Resonance Imaging of Early Visual Pathways in Dyslexia , 1998, The Journal of Neuroscience.

[3]  G. Glover,et al.  Self‐navigated spiral fMRI: Interleaved versus single‐shot , 1998, Magnetic resonance in medicine.

[4]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[5]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[6]  D. G. Albrecht,et al.  Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification , 1997, Visual Neuroscience.

[7]  D. Heeger,et al.  Modeling the Apparent Frequency-specific Suppression in Simple Cell Responses , 1997, Vision Research.

[8]  D. Heeger,et al.  Comparison of contrast-normalization and threshold models of the responses of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[9]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[10]  D. Heeger,et al.  Contrast normalization and a linear model for the directional selectivity of simple cells in cat striate cortex , 1997, Visual Neuroscience.

[11]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[12]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Movshon,et al.  A computational analysis of the relationship between neuronal and behavioral responses to visual motion , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[15]  G H Glover,et al.  Functional MR imaging. Capabilities and limitations. , 1995, Neuroimaging clinics of North America.

[16]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  D. Field,et al.  What's constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns , 1995, Vision Research.

[18]  J. Cohen,et al.  Spiral K‐space MR imaging of cortical activation , 1995, Journal of magnetic resonance imaging : JMRI.

[19]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[20]  Patrick C. Teo,et al.  Perceptual image distortion , 1994, Proceedings of 1st International Conference on Image Processing.

[21]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[22]  J. M. Foley,et al.  Human luminance pattern-vision mechanisms: masking experiments require a new model. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[24]  Geoffrey M. Boynton,et al.  New model of human luminance pattern vision mechanisms: analysis of the effects of pattern orientation, spatial phase, and temporal frequency , 1994, Other Conferences.

[25]  K. H. Britten,et al.  Responses of neurons in macaque MT to stochastic motion signals , 1993, Visual Neuroscience.

[26]  D. Heeger Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. , 1993, Journal of neurophysiology.

[27]  Jonathan D. Cohen,et al.  Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners , 1993, Nature.

[28]  A. B. Bonds,et al.  Computational Vision Based on Neurobiology , 1993 .

[29]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  D. Heeger Half-squaring in responses of cat striate cells , 1992, Visual Neuroscience.

[31]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[32]  I. Ohzawa,et al.  Organization of suppression in receptive fields of neurons in cat visual cortex. , 1992, Journal of neurophysiology.

[33]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[34]  J M Foley,et al.  Forward pattern masking: effects of spatial frequency and contrast. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[35]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[36]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[37]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[39]  Michael S. Landy,et al.  Nonlinear Model of Neural Responses in Cat Visual Cortex , 1991 .

[40]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[41]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Andrew Parker,et al.  Detection and discrimination mechanisms in the striate cortex of Old World monkeys , 1990 .

[43]  D. C. Essen,et al.  Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[44]  N. Graham Visual Pattern Analyzers , 1989 .

[45]  A. B. Bonds Role of Inhibition in the Specification of Orientation Selectivity of Cells in the Cat Striate Cortex , 1989, Visual Neuroscience.

[46]  H. Barlow,et al.  Human contrast discrimination and the threshold of cortical neurons. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[47]  I. Ohzawa,et al.  Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior. , 1987, Journal of neurophysiology.

[48]  I. Ohzawa,et al.  A comparison of contrast detection and discrimination , 1986, Vision Research.

[49]  D G Pelli,et al.  Uncertainty explains many aspects of visual contrast detection and discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[50]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[51]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[52]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[53]  G. Legge A power law for contrast discrimination , 1981, Vision Research.

[54]  J. Robson,et al.  Probability summation and regional variation in contrast sensitivity across the visual field , 1981, Vision Research.

[55]  A. Dean The relationship between response amplitude and contrast for cat striate cortical neurones. , 1981, The Journal of physiology.

[56]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[57]  A. Watson Probability summation over time , 1979, Vision Research.

[58]  D. Tolhurst,et al.  Interactions between spatial frequency channels , 1978, Vision Research.

[59]  S. Klein,et al.  Spatial frequency channels in human vision as asymmetric (edge) mechanisms. , 1974, Vision research.

[60]  J Nachmias,et al.  Letter: Grating contrast: discrimination may be better than detection. , 1974, Vision research.

[61]  Vision Research , 1961, Nature.

[62]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .