Absolute frequency and isotope shift measurements of mercury 1S0-3P1 transition.

We report the measurement of the absolute frequencies of the 6s2 1S0-6s6p 3P1 transition (253.7 nm) and the relevant isotope shifts in five mercury isotopes  198Hg,  199Hg,  200Hg,  202Hg, and  204Hg. The Doppler-free saturated absorption measurements were performed in an atomic vapour cell at room temperature with a four-harmonic generated (FHG) continuous-wave (cw) laser digitally locked to the atomic transition. It was referenced with a femtosecond optical frequency comb synchronized to the frequency of local representation of the International Atomic Time to provide traceability to the SI second by the 330 km-long stabilized fibre optical link. The transition frequencies and isotope shifts have been determined with an accuracy of a few hundred kHz, at least one order of magnitude better than any previous measurement. By making a King plot with the isotope shifts of 6s6p 3P2-6s7s 3S1 transition (546 nm) we determined the accurate value of the ratio of the electronic field-shift parameters E546/E254 and estimated the electronic field-shift term E254.

[1]  W. Palosz Residual gas in closed systems—I: development of gas in fused silica ampoules , 2004 .

[2]  Przemyslaw Krehlik,et al.  Ultrastable long-distance fibre-optic time transfer: active compensation over a wide range of delays , 2015 .

[3]  J. Genest,et al.  Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode , 2013 .

[4]  R. Ciuryło,et al.  Photoionization cross sections of the 5S1/2 and 5P3/2 states of Rb in simultaneous magneto-optical trapping of Rb and Hg , 2018, Physical Review A.

[5]  J. Nawrocki,et al.  Independent atomic timescale in Poland?organization and results , 2003 .

[6]  D. Budker,et al.  Probing New Long-Range Interactions by Isotope Shift Spectroscopy. , 2017, Physical review letters.

[7]  R. Kohler DETECTION OF DOUBLE RESONANCE BY FREQUENCY CHANGE: APPLICATION OF Hg$sup 20$$sup 1$ , 1961 .

[8]  C. V. Stager HYPERFINE STRUCTURE OF Hg$sup 197$ AND Hg$sup 19$$sup 9$ , 1963 .

[9]  S. Bize,et al.  Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition. , 2011, Physical review letters.

[10]  K. G. Kessler,et al.  Kr 86 and Atomic-Beam-Emitted Hg 198 Wavelengths , 1961 .

[11]  V. Dzuba,et al.  Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant , 2004, physics/0404042.

[12]  Albin Czubla,et al.  Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km , 2013 .

[13]  T. Walther,et al.  Magneto-optical trapping of neutral mercury , 2011 .

[14]  B. Heckel,et al.  Reduced Limit on the Permanent Electric Dipole Moment of ^{199}Hg. , 2016, Physical review letters.

[15]  John L. Hall,et al.  Precise laser frequency scanning using frequency-synthesized optical frequency sidebands: application to isotope shifts and hyperfine structure of mercury , 1989 .

[16]  D. F. Kimball,et al.  Search for New Physics with Atoms and Molecules , 2017, 1710.01833.

[17]  W. G. Schweitzer Hyperfine Structure and Isotope Shifts in the 2537-Å Line of Mercury by a New Interferometric Method , 1963 .

[18]  R. Ozeri,et al.  Probing Atomic Higgs-like Forces at the Precision Frontier , 2016, 1601.05087.

[19]  P. Masłowski,et al.  Testing optical clock calibration procedures: Absolute frequency measurement of rubidium 5S-7S two-photon transitions , 2013, 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC).

[20]  R. Ciuryło,et al.  Dual Hg-Rb magneto-optical trap. , 2017, Optics express.

[21]  John F. Kielkopf,et al.  The effect of neutral nonresonant collisions on atomic spectral lines , 1982 .

[22]  A. Kramida Re-Optimized Energy Levels and Ritz Wavelengths of 198Hg I , 2011, Journal of research of the National Institute of Standards and Technology.

[23]  D. Angom,et al.  Probing CP violation with the electric dipole moment of atomic mercury. , 2009, Physical review letters.

[24]  M. Zadnik,et al.  REVISED ISOTOPIC COMPOSITION OF TERRESTRIAL MERCURY , 1989 .

[25]  R. V. Meer,et al.  Mössbauer spectroscopy for heavy elements: a relativistic benchmark study of mercury , 2011 .

[26]  Craig J. Sansonetti,et al.  Wavelengths, Energy Level Classifications, and Energy Levels for the Spectrum of Neutral Neon , 2004 .

[27]  C. Bouchiat Parity violation in atomic processes , 1977 .

[28]  D. Friend,et al.  Correlation for the Vapor Pressure of Mercury , 2006 .

[29]  Pressure broadening and shift of the 326.1 nm Cd line perturbed by argon , 1996 .

[30]  E. F. Arias,et al.  Comparing a GPS time link calibration with an optical fibre self-calibration with 200 ps accuracy , 2015 .

[31]  V. Kaufman,et al.  WAVELENGTHS, ENERGY LEVELS, AND PRESSURE SHIFTS IN MERCURY 198 , 1962 .

[32]  J. Koperski Study of diatomic van der Waals complexes in supersonic beams , 2002 .

[33]  R. Trawiński On Argon-Induced Pressure Shifts of198Hg Spectral Lines Associated with Quasi-Rydberg Transitions , 2006 .

[34]  M. Takamoto,et al.  Trapping of neutral mercury atoms and prospects for optical lattice clocks. , 2007, Physical review letters.

[35]  E. Tiemann,et al.  Isotopic field shift of the rotational energy of the Pb-chalcogenides and Tl-Halides , 1982 .

[36]  C. Sansonetti,et al.  Doppler-free measurement of the 546 nm line of mercury , 2010 .

[37]  Hongli Liu,et al.  Magneto optical trap for neutral mercury atoms , 2013 .

[38]  Marc L. Salit,et al.  Wave numbers and Ar pressure-induced shifts of 198Hg atomic lines measured by Fourier transform spectroscopy , 2005 .

[39]  P. Aufmuth,et al.  Changes in mean-square nuclear charge radii from optical isotope shifts , 1974 .

[40]  Marcin Bober,et al.  Cavity mode-width spectroscopy with widely tunable ultra narrow laser. , 2013, Optics express.

[41]  K. Burns,et al.  Energy Levels and Wavelengths of the Isotopes of Mercury-198 and -202 , 1952 .

[42]  M. Romalis,et al.  Techniques used to search for a permanent electric dipole moment of the 199 Hg atom and the implications for CP violation , 2013 .

[43]  V. Flambaum,et al.  Isotope shift, nonlinearity of King plots, and the search for new particles , 2017, 1709.00600.

[44]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[45]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[46]  W. E. Baylis,et al.  Asymmetry in pressure-broadened spectral lines , 1977 .

[47]  K. G. Kessler,et al.  Wave-Lengths of Mercury 198 , 1950 .

[48]  Marcin Lipiński,et al.  Absolute measurement of the 1S0 − 3P0 clock transition in neutral 88Sr over the 330 km-long stabilized fibre optic link , 2015, Scientific Reports.

[49]  P. De Bièvre,et al.  Isotopic Compositions of the Elements, 2001 , 2005 .

[50]  Rosén,et al.  State-dependent volume isotope shifts of low-lying states of group-IIa and -IIb elements. , 1985, Physical review. A, General physics.

[51]  A. M. Rushton,et al.  An experimental study of muonic X-ray transitions in mercury isotopes , 1979 .

[52]  W. C. Martin,et al.  Handbook of Basic Atomic Spectroscopic Data , 2005 .

[53]  W. Klempt,et al.  Isotope shift of182Hg and an update of nuclear moments and charge radii in the isotope range181Hg-206Hg , 1986 .

[54]  S. Gerstenkorn,et al.  Fine and Hyperfine Structures and Isotope Shifts in the Arc Spectrum of Mercury. Part I. Experimental study of the infrared spectrum by Fourier transform spectroscopy , 1977 .

[55]  C. Bruce,et al.  Wavelengths of Krypton 86, Mercury 198, and Cadmium 114 , 1961 .