How Many Countries for Multilevel Modeling? A Comparison of Frequentist and Bayesian Approaches

Researchers in comparative research increasingly use multilevel models to test effects of country-level factors on individual behavior and preferences. However, the asymptotic justification of widely employed estimation strategies presumes large samples and applications in comparative politics routinely involve only a small number of countries. Thus, researchers and reviewers often wonder if these models are applicable at all. In other words, how many countries do we need for multilevel modeling? I present results from a large-scale Monte Carlo experiment comparing the performance of multilevel models when few countries are available. I find that maximum likelihood estimates and confidence intervals can be severely biased, especially in models including cross-level interactions. In contrast, the Bayesian approach proves to be far more robust and yields considerably more conservative tests.

[1]  R. Moineddin,et al.  A simulation study of sample size for multilevel logistic regression models , 2007, BMC medical research methodology.

[2]  Simon Jackman,et al.  Bayesian Analysis for the Social Sciences , 2009 .

[3]  Kai Arzheimer Contextual Factors and the Extreme Right Vote in Western Europe, 1980–2002 , 2009 .

[4]  K. Zou,et al.  Sample size considerations in observational health care quality studies , 2002, Statistics in medicine.

[5]  Robert J. Franzese,et al.  Empirical Strategies for Various Manifestations of Multilevel Data , 2005, Political Analysis.

[6]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[7]  Cora J. M. Maas,et al.  The influence of violations of assumptions on multilevel parameter estimates and their standard errors , 2004, Comput. Stat. Data Anal..

[8]  Pierre F. Landry,et al.  Reaching Migrants in Survey Research: The Use of the Global Positioning System to Reduce Coverage Bias in China , 2005, Political Analysis.

[9]  E. Jaynes,et al.  Confidence Intervals vs Bayesian Intervals , 1976 .

[10]  C. Hooker,et al.  Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science , 1976 .

[11]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[12]  W. P. Shively,et al.  Applying a Two-Step Strategy to the Analysis of Cross-National Public Opinion Data , 2005, Political Analysis.

[13]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[14]  Christopher H. Achen Two-Step Hierarchical Estimation: Beyond Regression Analysis , 2005, Political Analysis.

[15]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[16]  Bruce J. Taylor,et al.  Economics and Public Support for the European Union: An Analysis at the National, Regional, and Individual Levels , 2000, Polity.

[17]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[18]  G. McLachlan,et al.  The EM Algorithm and Extensions: Second Edition , 2008 .

[19]  William J. Browne,et al.  Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models , 2000, Comput. Stat..

[20]  D. Bates,et al.  Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model , 1995 .

[21]  A. Agresti,et al.  Modeling Clustered Ordered Categorical Data: A Survey , 2001 .

[22]  D. Stolle,et al.  Ethnic Diversity and Generalized Trust in Europe , 2009 .

[23]  K. O’Rourke,et al.  The Determinants of Individual Attitudes Towards Immigration , 2006 .

[24]  E. Voeten The Impartiality of International Judges: Evidence from the European Court of Human Rights , 2008, American Political Science Review.

[25]  L. Hooghe,et al.  Does Identity or Economic Rationality Drive Public Opinion on European Integration? , 2004, PS: Political Science & Politics.

[26]  Russell J. Dalton,et al.  Europeans and the European Community: the dynamics of public support for European integration , 1993, International Organization.

[27]  William J. Browne,et al.  Bayesian and likelihood-based methods in multilevel modeling 1 A comparison of Bayesian and likelihood-based methods for fitting multilevel models , 2006 .

[28]  Bradford S. Jones,et al.  Modeling Multilevel Data Structures , 2002 .

[29]  J. Hox,et al.  Sufficient Sample Sizes for Multilevel Modeling , 2005 .

[30]  J. Kmenta Mostly Harmless Econometrics: An Empiricist's Companion , 2010 .

[31]  Harvey Goldstein,et al.  Multilevel Statistical Models: Goldstein/Multilevel Statistical Models , 2010 .

[32]  Sophia Rabe-Hesketh,et al.  Multilevel and Longitudinal Modeling Using Stata , 2005 .

[33]  Jeff Gill,et al.  Bayesian Methods : A Social and Behavioral Sciences Approach , 2002 .

[34]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[35]  H. Goldstein Multilevel Statistical Models , 2006 .

[36]  D. Draper Bayesian Multilevel Analysis and MCMC , 2008 .

[37]  Booncharoen Sirinaovakul,et al.  Introduction to the Special Issue , 2002, Comput. Intell..

[38]  Fabrizio Gilardi,et al.  Who Learns from What in Policy Diffusion Processes , 2010 .

[39]  Noreen Goldman,et al.  An assessment of estimation procedures for multilevel models with binary responses , 1995 .

[40]  C. Anderson,et al.  The Sensitive Left and the Impervious Right , 2008 .

[41]  Luc BAUWENS,et al.  Bayesian Methods , 2011 .

[42]  Ulrike Dapp,et al.  Development, feasibility and performance of a health risk appraisal questionnaire for older persons , 2007, BMC medical research methodology.

[43]  F. Franchino,et al.  Legislative Involvement in Parliamentary Systems: Opportunities, Conflict, and Institutional Constraints , 2009, American Political Science Review.

[44]  P. Scheepers,et al.  The Politicized Participant , 2009 .

[45]  Jiming Jiang Linear and Generalized Linear Mixed Models and Their Applications , 2007 .

[46]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[47]  S. Rabe-Hesketh,et al.  Reliable Estimation of Generalized Linear Mixed Models using Adaptive Quadrature , 2002 .

[48]  S. Weldon The Institutional Context of Tolerance for Ethnic Minorities: A Comparative, Multilevel Analysis of Western Europe , 2006 .

[49]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[50]  Edwin Thompson Jaynes,et al.  Probability theory , 2003 .

[51]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[52]  E. Zhuravskaya,et al.  Who Wants To Revise Privatization? The Complementarity of Market Skills and Institutions , 2009, American Political Science Review.

[53]  H. Pan,et al.  A Multilevel Analysis of School Examination Results , 1993 .

[54]  R. Andersen,et al.  Economic Inequality and Intolerance: Attitudes toward Homosexuality in 35 Democracies , 2008 .

[55]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[56]  Jan de Leeuw,et al.  Introducing Multilevel Modeling , 1998 .

[57]  Cora J. M. Maas,et al.  Robustness issues in multilevel regression analysis , 2004 .

[58]  Simon Jackman,et al.  Bayesian Inference for Comparative Research , 1994, American Political Science Review.

[59]  Tom A. B. Snijders,et al.  Multilevel Analysis , 2011, International Encyclopedia of Statistical Science.

[60]  Roel Bosker,et al.  Multilevel analysis : an introduction to basic and advanced multilevel modeling , 1999 .

[61]  I. Kreft Are multilevel techniques necessary?: An overview, including simulation studies , 2005 .

[62]  M. Aitkin,et al.  Statistical Modelling Issues in School Effectiveness Studies , 1986 .

[63]  F. Rosenbluth,et al.  The Political Economy of Gender: Explaining Cross‐National Variation in the Gender Division of Labor and the Gender Voting Gap , 2006 .

[64]  E. Jaynes Probability theory : the logic of science , 2003 .

[65]  Marno Verbeek,et al.  A Guide to Modern Econometrics , 2000 .

[66]  G. King,et al.  Unifying Political Methodology: The Likelihood Theory of Statistical Inference , 1989 .

[67]  D. Afshartous Determination of Sample Size for Multilevel Model Design , 2011 .

[68]  George A. Lundberg,et al.  The Logic of Science , 1930 .

[69]  Walter R. Gilks,et al.  BUGS - Bayesian inference Using Gibbs Sampling Version 0.50 , 1995 .

[70]  J. Gill The Insignificance of Null Hypothesis Significance Testing , 1999 .

[71]  J. Booth,et al.  2. Random-Effects Modeling of Categorical Response Data , 2000 .

[72]  Jeffrey R. Lax,et al.  Gay Rights in the States: Public Opinion and Policy Responsiveness , 2009, American Political Science Review.

[73]  L. Corrado Generalized Latent Variable Modeling: Multilevel, Longitudinal, and Structural Equation Models , 2005 .

[74]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[75]  Robert S. Stawski,et al.  Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling (2nd Edition) , 2013 .

[76]  B. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .