Successive phase transitions and magnetization plateau in the spin-1 triangular-lattice antiferromagnet Ba2La2NiTe2O12 with small easy-axis anisotropy

The crystal structure and magnetic properties of the spin-1 triangular-lattice antiferromagnet ${\mathrm{Ba}}_{2}{\mathrm{La}}_{2}{\mathrm{NiTe}}_{2}{\mathrm{O}}_{12}$ are reported. Its crystal structure is trigonal $R\overline{3}$, which is the same as that of ${\mathrm{Ba}}_{2}{\mathrm{La}}_{2}{\mathrm{NiW}}_{2}{\mathrm{O}}_{12}$ [Y. Doi et al., J. Phys.: Condens. Matter 29, 365802 (2017)]. However, the exchange interaction $J/{k}_{\mathrm{B}}\ensuremath{\simeq}19$ K is much greater than that observed in the tungsten system. At zero magnetic field, ${\mathrm{Ba}}_{2}{\mathrm{La}}_{2}{\mathrm{NiTe}}_{2}{\mathrm{O}}_{12}$ undergoes successive magnetic phase transitions at ${T}_{\mathrm{N}1}=9.8$ K and ${T}_{\mathrm{N}2}=8.9$ K. The ground state is accompanied by a weak ferromagnetic moment. These results indicate that the ground-state spin structure is a triangular structure in a plane perpendicular to the triangular lattice owing to the small easy-axis-type anisotropy. The magnetization curve exhibits the one-third plateau characteristic of a two-dimensional triangular-lattice Heisenberg-like antiferromagnet. Exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate the large difference in the exchange constants between tellurium and tungsten systems and the good two-dimensionality of the tellurium system.

[1]  T. Ono,et al.  Cascade of magnetic-field-induced quantum phase transitions in a spin-1/2 triangular-lattice antiferromagnet. , 2008, Physical review letters.

[2]  J. Richter,et al.  The magnetization process of the spin-one triangular-lattice Heisenberg antiferromagnet , 2012, 1210.7594.

[3]  M. Mourigal,et al.  Dynamical structure factor of the triangular-lattice antiferromagnet , 2013, 1306.1231.

[4]  Y. Maeno,et al.  Successive phase transitions and phase diagrams for the quasi-two-dimensional easy-axis triangular antiferromagnet Rb4Mn(MoO4)3 , 2009, 0912.4796.

[5]  H. Kawamura,et al.  Quantum spin-liquid behavior in the spin-1/2 random-bond Heisenberg antiferromagnet on the kagome lattice , 2014, 1408.0606.

[6]  O. Petrenko,et al.  Review/Synthèse: Triangular antiferromagnets , 1997 .

[7]  F. Izumi,et al.  Three-Dimensional Visualization in Powder Diffraction , 2007 .

[8]  H. Jeschke,et al.  Signatures of a gearwheel quantum spin liquid in a spin- 12 pyrochlore molybdate Heisenberg antiferromagnet , 2017, 1705.05291.

[9]  D. Yamamoto,et al.  Quantum phase diagram of the triangular-lattice XXZ model in a magnetic field. , 2013, Physical review letters.

[10]  Jolicoeur,et al.  Spin-wave results for the triangular Heisenberg antiferromagnet. , 1989, Physical review. B, Condensed matter.

[11]  M. Avdeev,et al.  Quantum magnetic properties of the spin-12 triangular-lattice antiferromagnet Ba2La2CoTe2O12 , 2018, 1809.04817.

[12]  N. Kurita,et al.  Magnetic Phase Diagram of the S=1/2 Triangular-Lattice Heisenberg Antiferromagnet Ba3CoNb2O9 , 2014, 1406.5787.

[13]  F. Matsubara Magnetic Ordering in a Hexagonal Antiferromagnet , 1982 .

[14]  T. Goto,et al.  Magnetization plateau in the frustrated quantum spin system Cs 2 CuBr 4 , 2003 .

[15]  J. Oitmaa,et al.  Magnons and excitation continuum in XXZ triangular antiferromagnetic model: Application to Ba3CoSb2O9 , 2014, 1411.5298.

[16]  H. Shiba,et al.  Quantum Fluctuations and Magnetic Structures of CsCuCl3 in High Magnetic Field , 1993 .

[17]  J. Richter,et al.  High-order coupled cluster method study of frustrated and unfrustrated quantum magnets in external magnetic fields , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  T. Coletta,et al.  Semiclassical theory of the magnetization process of the triangular lattice Heisenberg model , 2016, 1605.06347.

[19]  H. Nojiri,et al.  Magnetization process and collective excitations in the S=1/2 triangular-lattice Heisenberg antiferromagnet Ba3CoSb2O9. , 2013, Physical review letters.

[20]  H. Lipson Crystal Structures , 1949, Nature.

[21]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[22]  D. I. Golosov,et al.  Quantum theory of an antiferromagnet on a triangular lattice in a magnetic field , 1991 .

[23]  Helmut Eschrig,et al.  FULL-POTENTIAL NONORTHOGONAL LOCAL-ORBITAL MINIMUM-BASIS BAND-STRUCTURE SCHEME , 1999 .

[24]  C. Batista,et al.  Dynamical structure factor of the triangular antiferromagnet: Schwinger boson theory beyond mean field , 2018, Physical Review B.

[25]  G. Ehlers,et al.  Static and Dynamical Properties of the Spin-1/2 Equilateral Triangular-Lattice Antiferromagnet Ba_{3}CoSb_{2}O_{9}. , 2015, Physical review letters.

[26]  M. S. Singh,et al.  Three-sublattice order in triangular- and Kagomé-lattice spin-half antiferromagnets. , 1992, Physical review letters.

[27]  L. Manuel,et al.  A test of the bosonic spinon theory for the triangular antiferromagnet spectrum , 2010, 1011.0874.

[28]  D. Yamamoto,et al.  Microscopic model calculations for the magnetization process of layered triangular-lattice quantum antiferromagnets. , 2014, Physical review letters.

[29]  Fujimori,et al.  Electronic structure and orbital ordering in perovskite-type 3d transition-metal oxides studied by Hartree-Fock band-structure calculations. , 1996, Physical review. B, Condensed matter.

[30]  H. Nakano,et al.  Quantum Spin-Liquid Behavior in the Spin-1/2 Random Heisenberg Antiferromagnet on the Triangular Lattice , 2013, 1309.6309.

[31]  A. Chernyshev,et al.  Spin waves in a triangular lattice antiferromagnet: Decays, spectrum renormalization, and singularities , 2009, 0901.4803.

[32]  Junliang Sun,et al.  Synthesis and crystal structure of Ba2La2MnW2O12 , 2004 .

[33]  R. Valentí,et al.  Reduction of magnetic interlayer coupling in barlowite through isoelectronic substitution , 2016, 1605.08162.

[34]  O. Sakai,et al.  Resonant Magnetic X-ray Diffraction Study on the Triangular Lattice Antiferromagnet GdPd2Al3 , 2009, 0907.1941.

[35]  Spin waves in a triangular lattice antiferromagnet: Decays, spectrum renormalization, and singularities , 2009 .

[36]  K. Kakurai,et al.  Structure of the magnetic excitations in the spin-1/2 triangular-lattice Heisenberg antiferromagnet Ba3CoSb2O9 , 2017, Nature Communications.

[37]  S. Kemmler‐sack Über hexagonale Perowskite mit Kationenfehlstellen. XIV Die rhomboedrischen 12 L‐Stapelvarianten Ba2La2BII(W 2VI□O12) , 1980 .

[38]  Elser,et al.  Simple variational wave functions for two-dimensional Heisenberg spin-(1/2 antiferromagnets. , 1988, Physical review letters.

[39]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[40]  H. Nakano,et al.  Critical magnetization behavior of the triangular- and kagome-lattice quantum antiferromagnets , 2011, 1102.3486.

[41]  A. Matsuo,et al.  Field-driven successive phase transitions in the quasi-two-dimensional frustrated antiferromagnet Ba 2 CoTeO 6 and highly degenerate classical ground states , 2015, 1512.00693.

[42]  O. Starykh,et al.  Phases of a triangular-lattice antiferromagnet near saturation. , 2014, Physical review letters.

[43]  H. Zhou,et al.  Successive phase transitions and extended spin-excitation continuum in the S=1/2 triangular-lattice antiferromagnet Ba3CoSb2O9. , 2012, Physical review letters.

[44]  H. Zhou,et al.  Magnetic phase diagram of Ba 3 CoSb 2 O 9 as determined by ultrasound velocity measurements , 2015 .

[45]  S. Miyashita,et al.  Phase Transition of the Heisenberg Antiferromagnet on the Triangular Lattice in a Magnetic Field , 1985 .

[46]  S. Miyashita Magnetic Properties of Ising-Like Heisenberg Antiferromagnets on the Triangular Lattice , 1986 .

[47]  A. Matsuo,et al.  Quantum Magnetization Plateau in Spin-1 Triangular-Lattice Antiferromagnet Ba3NiSb2O9 , 2011, 1105.4046.

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  J. Alicea,et al.  Quantum stabilization of the 1/3-magnetization plateau in Cs2CuBr4. , 2008, Physical review letters.

[50]  O. Starykh Unusual ordered phases of highly frustrated magnets: a review , 2014, Reports on progress in physics. Physical Society.

[51]  S. Nishimoto,et al.  Grand canonical finite size numerical approaches in one and two dimensions: Real space energy renormalization and edge state generation , 2013 .

[52]  H. Jeschke,et al.  Stability of the spiral spin liquid in MnSc2S4 , 2018, Physical Review B.

[53]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[54]  M. Avdeev,et al.  Magnetic structure of the S =1/2 quasi-two-dimensional square-lattice Heisenberg antiferromagnet Sr 2 CuTeO 6 , 2016, 1602.03281.

[55]  K. Ohoyama,et al.  Structural and magnetic properties of pseudo-two-dimensional triangular antiferromagnets Ba3MSb2O9 (M = Mn, Co, and Ni) , 2004 .

[56]  G. Kido,et al.  HIGH-FIELD MAGNETIZATION OF TRIANGULAR LATTICE ANTIFERROMAGNET : GDPD2AL3 , 1999 .

[57]  Xue-Feng Zhang,et al.  Phase diagram of the antiferromagnetic XXZ model on the triangular lattice , 2014, 1403.0008.

[58]  A ug 2 01 3 Magnetic Phases of the Spin-1 / 2 Triangular-Lattice Antiferromagnet Ba , 2014 .

[59]  J. Akimitsu,et al.  Pressure-induced quantum phase transitions in the S =1/2 triangular lattice antiferromagnet CsCuCl 3 , 2017 .

[60]  T. Kamiyama,et al.  Crystal structures, magnetic properties, and DFT calculation of B-site defected 12L-perovskites Ba2La2MW2O12 (M  =  Mn, Co, Ni, Zn) , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[61]  Steven R White,et al.  Neél order in square and triangular lattice Heisenberg models. , 2007, Physical review letters.

[62]  H. Nishimori,et al.  Magnetization Process of the Spin-1/2 Antiferromagnetic Ising-Like Heisenberg Model on the Triangular Lattice , 1986 .

[63]  H. Zhou,et al.  The nature of spin excitations in the one-third magnetization plateau phase of Ba3CoSb2O9 , 2017, Nature Communications.

[64]  Weihong Zheng,et al.  Excitation spectra of the spin- 1 2 triangular-lattice Heisenberg antiferromagnet , 2006, cond-mat/0608008.

[65]  P. Sindzingre,et al.  Phase diagram of the classical Heisenberg antiferromagnet on a triangular lattice in an applied magnetic field , 2011, 1109.2211.