An Irregular Grid Approach for Pricing High-Dimensional American Options

We propose and test a new method for pricing American options in a high-dimensional setting. The method is centered around the approximation of the associated complementarity problem on an irregular grid. We approximate the partial differential operator on this grid by appealing to the SDE representation of the underlying process and computing the root of the transition probability matrix of an approximating Markov chain. Experimental results in five-dimensions are presented for four different payoff functions.

[1]  J. M. Schumacher,et al.  An irregular grid method for high-dimensional free-boundary problems in finance , 2004, Future Gener. Comput. Syst..

[2]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[3]  Tim B. Swartz,et al.  Approximating Integrals Via Monte Carlo and Deterministic Methods , 2000 .

[4]  Jérôme Barraquand,et al.  Numerical Valuation of High Dimensional Multivariate American Securities , 1995, Journal of Financial and Quantitative Analysis.

[5]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[6]  Lars Stentoft Assessing the Least Squares Monte-Carlo Approach to American Option Valuation , 2004 .

[7]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[8]  P. Glasserman,et al.  Classical solutions to reaction-diffusion systems for hedging problems with interacting Ito and point processes , 2004, math/0505208.

[9]  M. Fu,et al.  Pricing American Options: A Comparison of Monte Carlo Simulation Approaches ⁄ , 2001 .

[10]  Ken Seng Tan,et al.  An improved simulation method for pricing high-dimensional American derivatives , 2003, Math. Comput. Simul..

[11]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[12]  P. Glasserman,et al.  A Sotchastic Mesh Method for Pricing High-Dimensional American Options , 2004 .

[13]  P. Glasserman,et al.  Pricing American-style securities using simulation , 1997 .

[14]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[15]  J. Barraquand Numerical valuation of high dimensional multivariate European securities , 1995 .

[16]  P. Boyle,et al.  Numerical Evaluation of Multivariate Contingent Claims , 1989 .

[17]  L. Rogers Monte Carlo valuation of American options , 2002 .

[18]  J. M. Schumacher,et al.  Pricing High-Dimensional American Options Using Local Consistency Conditions , 2004 .

[19]  D. Lamberton,et al.  Variational inequalities and the pricing of American options , 1990 .

[20]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[21]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[22]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[23]  Dawn Hunter,et al.  A stochastic mesh method for pricing high-dimensional American options , 2004 .

[24]  Philip Protter,et al.  An analysis of a least squares regression method for American option pricing , 2002, Finance Stochastics.

[25]  Manuel Moreno,et al.  On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives , 2007 .

[26]  Michael A. H. Dempster,et al.  Pricing American Stock Options by Linear Programming , 1997 .

[27]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[28]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[29]  Lars Stentoft,et al.  Convergence of the Least Squares Monte Carlo Approach to American Option Valuation , 2004, Manag. Sci..

[30]  John Schoenmakers,et al.  Upper Bounds for Bermudan Style Derivatives , 2004, Monte Carlo Methods Appl..