Molecular cartography in acute Chlamydia pneumoniae infections—a non-targeted metabolomics approach

Infections with Chlamydia pneumoniae cause several respiratory diseases, such as community-acquired pneumonia, bronchitis or sinusitis. Here, we present an integrated non-targeted metabolomics analysis applying ultra-high-resolution mass spectrometry and ultra-performance liquid chromatography mass spectrometry to determine metabolite alterations in C. pneumoniae-infected HEp-2 cells. Most important permutations are elaborated using uni- and multivariate statistical analysis, logD retention time regression and mass defect-based network analysis. Classes of metabolites showing high variations upon infection are lipids, carbohydrates and amino acids. Moreover, we observed several non-annotated compounds as predominantly abundant after infection, which are promising biomarker candidates for drug-target and diagnostic research.

[1]  J. Pearce,et al.  Differential amino acid utilization by Chlamydia psittaci (strain guinea pig inclusion conjunctivitis) and its regulatory effect on chlamydial growth. , 1983, Journal of general microbiology.

[2]  Hideyo Sato,et al.  The oxidative stress-inducible cystine/glutamate antiporter, system xc−: cystine supplier and beyond , 2011, Amino Acids.

[3]  G. Hatch,et al.  Phospholipid Composition of PurifiedChlamydia trachomatis Mimics That of the Eucaryotic Host Cell , 1998, Infection and Immunity.

[4]  Gerhard Eckel,et al.  High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall , 2010, Proceedings of the National Academy of Sciences.

[5]  R. Breitling,et al.  Precision mapping of the metabolome. , 2006, Trends in biotechnology.

[6]  J. Moulder Interaction of chlamydiae and host cells in vitro. , 1991, Microbiological reviews.

[7]  H. Degani,et al.  Enhancement of ATP Levels and Glucose Metabolism during an Infection by Chlamydia , 1998, The Journal of Biological Chemistry.

[8]  S. V. van IJzendoorn,et al.  Host cell‐derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis , 2000, Cellular microbiology.

[9]  Ronald W. Davis,et al.  Comparative genomes of Chlamydia pneumoniae and C. trachomatis , 1999, Nature Genetics.

[10]  E. Schleicher,et al.  Insulin Sensitivity Is Reflected by Characteristic Metabolic Fingerprints - A Fourier Transform Mass Spectrometric Non-Targeted Metabolomics Approach , 2010, PloS one.

[11]  T. Hackstadt,et al.  The Chlamydial Inclusion Preferentially Intercepts Basolaterally Directed Sphingomyelin‐Containing Exocytic Vacuoles , 2008, Traffic.

[12]  T. Hackstadt,et al.  Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. Elwell,et al.  Lipid acquisition by intracellular Chlamydiae , 2012, Cellular microbiology.

[14]  F. Blasi,et al.  Epidemiology of Chlamydia pneumoniae. , 1998, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[15]  G. Kruppa,et al.  Metabolomics applications of FT-ICR mass spectrometry. , 2005, Mass spectrometry reviews.

[16]  D. Vitkup,et al.  New surveyor tools for charting microbial metabolic maps , 2008, Nature Reviews Microbiology.

[17]  Donald G Robertson,et al.  Metabolomics in toxicology: preclinical and clinical applications. , 2011, Toxicological sciences : an official journal of the Society of Toxicology.

[18]  Grayston Jt Infections caused by Chlamydia pneumoniae strain TWAR. , 1992 .

[19]  V. Govorun,et al.  The role of intracellular glutathione in the progression of Chlamydia trachomatis infection. , 2010, Free Radical Biology & Medicine.

[20]  Kazuki Saito,et al.  Metabolomics for functional genomics, systems biology, and biotechnology. , 2010, Annual review of plant biology.

[21]  C. Forst Host-pathogen systems biology. , 2006, Drug discovery today.

[22]  D. E. Atkinson The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. , 1968, Biochemistry.

[23]  P. Wyrick Intracellular survival by Chlamydia , 2000, Cellular microbiology.

[24]  T. Meyer,et al.  Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction , 2009, Nature.

[25]  W. Liang,et al.  9) TM4 Microarray Software Suite , 2006 .

[26]  S. Grinstein,et al.  Accumulation of Diacylglycerol in the Chlamydia Inclusion Vacuole , 2005, Journal of Biological Chemistry.

[27]  Shigehiko Kanaya,et al.  Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. , 2010, Current opinion in biotechnology.

[28]  R. Goodacre Metabolomics of a superorganism. , 2007, The Journal of nutrition.

[29]  J. Antón,et al.  Metabolic evidence for biogeographic isolation of the extremophilic bacterium Salinibacter ruber , 2008, The ISME Journal.

[30]  W. Liang,et al.  TM4 microarray software suite. , 2006, Methods in enzymology.

[31]  E. Iliffe-Lee,et al.  Regulation of carbon metabolism in Chlamydia trachomatis , 2000, Molecular microbiology.

[32]  S. Salzberg,et al.  Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. , 2000, Nucleic acids research.

[33]  A. Fernie,et al.  Metabolite profiling: from diagnostics to systems biology , 2004, Nature Reviews Molecular Cell Biology.

[34]  Grayston Jt INFECTIONS CAUSED BY CHLAMYDIA PNEUMONIAE STRAIN TWAR , 1993 .

[35]  J. Pearce,et al.  Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms. , 1985, Journal of general microbiology.

[36]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[37]  Laura G. Dubois,et al.  Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms , 2011, Molecular microbiology.

[38]  E. Gillespie Concanavalin A increases glyoxalase enzyme activities in polymorphonuclear leukocytes and lymphocytes. , 1978, Journal of immunology.

[39]  R. Heinzen,et al.  Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. , 1996, The EMBO journal.

[40]  P. Skipp,et al.  Shotgun proteomic analysis of Chlamydia trachomatis , 2005, Proteomics.

[41]  T. Hatch,et al.  Adenine nucleotide and lysine transport in Chlamydia psittaci , 1982, Journal of bacteriology.

[42]  P. Schmitt‐Kopplin,et al.  Natural organic matter and the event horizon of mass spectrometry. , 2008, Analytical chemistry.

[43]  R. W. Davis,et al.  Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. , 1998, Science.

[44]  E. Iliffe-Lee,et al.  Glucose metabolism in Chlamydia trachomatis: the ‘energy parasite’ hypothesis revisited , 1999, Molecular microbiology.

[45]  J. Wylie,et al.  Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis , 1997, Journal of bacteriology.

[46]  Karsten Suhre,et al.  MassTRIX: mass translator into pathways , 2008, Nucleic Acids Res..

[47]  P. He,et al.  Chlamydia pneumoniae disturbs cholesterol homeostasis in human THP-1 macrophages via JNK-PPARγ dependent signal transduction pathways. , 2010, Microbes and infection.

[48]  G. Job,et al.  Chlamydia pneumoniae infected macrophages exhibit enhanced plasma membrane fluidity and show increased adherence to endothelial cells , 2005, Molecular and Cellular Biochemistry.

[49]  Christian Gieger,et al.  A genome-wide perspective of genetic variation in human metabolism , 2010, Nature Genetics.

[50]  D. Raoult,et al.  Regulation of whole bacterial pathogen transcription within infected hosts. , 2008, FEMS microbiology reviews.

[51]  G. Zhong,et al.  Activation of Raf/MEK/ERK/cPLA2 Signaling Pathway Is Essential for Chlamydial Acquisition of Host Glycerophospholipids* , 2004, Journal of Biological Chemistry.

[52]  R. Valdivia,et al.  New insights into Chlamydia intracellular survival mechanisms , 2009, Cellular microbiology.

[53]  N. Hertkorn,et al.  Kendrick-Analogous Network Visualisation of Ion Cyclotron Resonance Fourier Transform Mass Spectra: Improved Options for the Assignment of Elemental Compositions and the Classification of Organic Molecular Complexity , 2011, European journal of mass spectrometry.